首页> 美国卫生研究院文献>PLoS Computational Biology >Membrane Properties and the Balance between Excitation and Inhibition Control Gamma-Frequency Oscillations Arising from Feedback Inhibition
【2h】

Membrane Properties and the Balance between Excitation and Inhibition Control Gamma-Frequency Oscillations Arising from Feedback Inhibition

机译:反馈抑制引起的膜性质和激发与抑制之间的平衡控制γ-频率振荡

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational studies as well as in vivo and in vitro results have shown that many cortical neurons fire in a highly irregular manner and at low average firing rates. These patterns seem to persist even when highly rhythmic signals are recorded by local field potential electrodes or other methods that quantify the summed behavior of a local population. Models of the 30–80 Hz gamma rhythm in which network oscillations arise through ‘stochastic synchrony’ capture the variability observed in the spike output of single cells while preserving network-level organization. We extend upon these results by constructing model networks constrained by experimental measurements and using them to probe the effect of biophysical parameters on network-level activity. We find in simulations that gamma-frequency oscillations are enabled by a high level of incoherent synaptic conductance input, similar to the barrage of noisy synaptic input that cortical neurons have been shown to receive in vivo. This incoherent synaptic input increases the emergent network frequency by shortening the time scale of the membrane in excitatory neurons and by reducing the temporal separation between excitation and inhibition due to decreased spike latency in inhibitory neurons. These mechanisms are demonstrated in simulations and in vitro current-clamp and dynamic-clamp experiments. Simulation results further indicate that the membrane potential noise amplitude has a large impact on network frequency and that the balance between excitatory and inhibitory currents controls network stability and sensitivity to external inputs.
机译:计算研究以及体内和体外结果表明,许多皮质神经元以高度不规则的方式发射,且平均发射率低。即使通过局部场电势电极或其他量化局部人群总行为的方法记录了高度节律的信号,这些模式似乎仍然存在。在30–80 Hz伽玛节律的模型中,通过“随机同步”引起网络振荡,从而捕获了单个细胞的尖峰输出中观察到的变异性,同时保留了网络级组织。我们通过构建受实验测量约束的模型网络,并使用它们来探测生物物理参数对网络级活动的影响,来扩展这些结果。我们在模拟中发现,高频率的非相干突触电导输入可以启用伽马频率振荡,这与皮质神经元已在体内接受的嘈杂突触输入的弹幕相似。这种不连贯的突触输入通过缩短兴奋性神经元中的膜的时间尺度并通过减少由于抑制性神经元中的尖峰潜伏期缩短而引起的兴奋与抑制之间的时间间隔来增加紧急网络的频率。这些机制已在仿真以及体外电流钳和动态钳实验中得到证明。仿真结果进一步表明,膜电位噪声幅度对网络频率有很大影响,并且励磁电流和抑制电流之间的平衡控制着网络的稳定性和对外部输入的灵敏度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号