首页> 美国卫生研究院文献>PLoS Computational Biology >Accurate Path Integration in Continuous Attractor Network Models ofGrid Cells
【2h】

Accurate Path Integration in Continuous Attractor Network Models ofGrid Cells

机译:连续吸引子网络模型中的精确路径集成。网格单元

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range ofparameters and the inclusion of spike variability, our model networks canaccurately integrate velocity inputs over a maximum of ∼10–100meters and ∼1–10 minutes. These findings form aproof-of-concept that continuous attractor dynamics may underlie velocityintegration in the dorsolateral medial entorhinal cortex. The simulations alsogenerate pertinent upper bounds on the accuracy of integration that may beachieved by continuous attractor dynamics in the grid cell network. We suggestexperiments to test the continuous attractor model and differentiate it frommodels in which single cells establish their responses independently of eachother.
机译:大鼠内脏皮质的网格细胞对动物在二维空间中的位置表现出惊人的规律性放电反应,并被假设为形成死亡复仇的神经基质。但是,当将速度输入集成到网格单元活动的现有模型中时,误差会迅速累积。为了产生类似网格细胞的响应,这些模型将需要由外部感官提示触发的频繁重置。各种模型所共有的这种不足之处,使人们对网格单元系统的沉没潜能产生了怀疑。在这里,我们关注于精确路径集成的问题,特别是在网格单元活动的连续吸引子模型中。与以前的模型相比,我们显示出连续的吸引子模型可以基于仅编码大鼠的速度和航向的输入来生成规则的三角形网格响应。我们考虑了网络边界在网络集成性能中的作用,并表明周期性和非周期性网络都能够进行精确的路径集成,尽管它们的吸引器流形之间存在重要差异。我们将速度积分中的误差累积的速率量化为网络大小和网络内固有噪声的函数。具有合理的范围参数和包含尖峰变异性,我们的模型网络可以精确地集成速度输入,最大范围为10-100米和约1-10分钟。这些发现构成了连续吸引子动力学可能是速度基础的概念证明整合在背外侧内侧内嗅皮层。模拟也产生有关积分准确性的相关上限通过网格单元网络中连续的吸引子动力学实现。我们建议实验以测试连续吸引子模型并将其与单个细胞独立于每个细胞建立反应的模型其他。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号