首页> 美国卫生研究院文献>PLoS Computational Biology >Genome-Scale Reconstruction and Analysis of the Pseudomonasputida KT2440 Metabolic Network Facilitates Applications inBiotechnology
【2h】

Genome-Scale Reconstruction and Analysis of the Pseudomonasputida KT2440 Metabolic Network Facilitates Applications inBiotechnology

机译:假单胞菌的基因组规模重建和分析putida KT2440代谢网络促进了在生物技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A cornerstone of biotechnology is the use of microorganisms for the efficient production of chemicals and the elimination of harmful waste. Pseudomonas putida is an archetype of such microbes due to its metabolic versatility, stress resistance, amenability to genetic modifications, and vast potential for environmental and industrial applications. To address both the elucidation of the metabolic wiring in P. putida and its uses in biocatalysis, in particular for the production of non-growth-related biochemicals, we developed and present here a genome-scale constraint-based model of the metabolism of P. putida KT2440. Network reconstruction and flux balance analysis (FBA) enabled definition of the structure of the metabolic network, identification of knowledge gaps, and pin-pointing of essential metabolic functions, facilitating thereby the refinement of gene annotations. FBA and flux variability analysis were used to analyze the properties, potential, and limits of the model. These analyses allowed identification, under various conditions, of key features of metabolism such as growth yield, resource distribution, network robustness, and gene essentiality. The model was validated with data from continuous cell cultures,high-throughput phenotyping data, 13C-measurement of internal fluxdistributions, and specifically generated knock-out mutants. Auxotrophy wascorrectly predicted in 75% of the cases. These systematic analysesrevealed that the metabolic network structure is the main factor determining theaccuracy of predictions, whereas biomass composition has negligible influence.Finally, we drew on the model to devise metabolic engineering strategies toimprove production of polyhydroxyalkanoates, a class of biotechnologicallyuseful compounds whose synthesis is not coupled to cell survival. The solidlyvalidated model yields valuable insights into genotype–phenotyperelationships and provides a sound framework to explore this versatile bacteriumand to capitalize on its vast biotechnological potential.
机译:生物技术的基石是利用微生物有效生产化学药品并消除有害废物。恶臭假单胞菌(Pseudomonas putida)是这种微生物的原型,因为其代谢通用性,抗逆性,对基因修饰的适应性以及在环境和工业应用中的巨大潜力。为了解决恶臭假单胞菌代谢途径的阐明及其在生物催化中的用途,特别是用于生产与生长无关的生化物质,我们在此开发并提出了一种基于基因组尺度的P代谢模型put田KT2440网络重建和流量平衡分析(FBA)可以定义代谢网络的结构,识别知识缺口并精确定位基本的代谢功能,从而促进基因注释的完善。 FBA和通量变异性分析用于分析模型的特性,潜力和极限。这些分析允许在各种条件下鉴定代谢的关键特征,例如生长产量,资源分布,网络稳健性和基因必要性。该模型已通过来自连续细胞培养的数据进行了验证,高通量表型数据,内部通量的 13 C测量分布,特别是产生的敲除突变体。萎缩病原为在75%的情况下可以正确预测。这些系统的分析揭示了代谢网络结构是决定代谢的主要因素预测的准确性,而生物量组成的影响可忽略不计。最后,我们利用该模型设计代谢工程策略以改善一类生物技术上的聚羟基链烷酸酯的生产有用的化合物,其合成与细胞存活无关。扎实经过验证的模型对基因型-表型产生了有价值的见解关系,并为探索这种多功能细菌提供了可靠的框架并利用其巨大的生物技术潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号