首页> 美国卫生研究院文献>Protein Science : A Publication of the Protein Society >BayeStab: Predicting effects of mutations on protein stability with uncertainty quantification
【2h】

BayeStab: Predicting effects of mutations on protein stability with uncertainty quantification

机译:BayeStab:通过不确定性量化预测突变对蛋白质稳定性的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Predicting protein thermostability change upon mutation is crucial for understanding diseases and designing therapeutics. However, accurately estimating Gibbs free energy change of the protein remained a challenge. Some methods struggle to generalize on examples with no homology and produce uncalibrated predictions. Here we leverage advances in graph neural networks for protein feature extraction to tackle this structure–property prediction task. Our method, BayeStab, is then tested on four test datasets, including S669, S611, S350, and Myoglobin, showing high generalization and symmetry performance. Meanwhile, we apply concrete dropout enabled Bayesian neural networks to infer plausible models and estimate uncertainty. By decomposing the uncertainty into parts induced by data noise and model, we demonstrate that the probabilistic method allows insights into the inherent noise of the training datasets, which is closely relevant to the upper bound of the task. Finally, the BayeStab web server is created and can be found at: http://www.bayestab.com. The code for this work is available at: https://github.com/HongzhouTang/BayeStab.
机译:预测突变时蛋白质的热稳定性变化对于了解疾病和设计治疗方法至关重要。然而,准确估计蛋白质的 Gibbs 自由能变化仍然是一个挑战。一些方法难以对没有同源性的示例进行泛化,并产生未校准的预测。在这里,我们利用图神经网络的进步进行蛋白质特征提取来处理这个结构-属性预测任务。然后在四个测试数据集上测试了我们的方法 BayeStab,包括 S669、S611、S350 和 Myoglobin,显示出高泛化和对称性能。同时,我们应用具体的 dropout 启用的贝叶斯神经网络来推断合理的模型并估计不确定性。通过将不确定性分解为由数据噪声和模型引起的部分,我们证明了概率方法可以深入了解训练数据集的固有噪声,这与任务的上限密切相关。最后,创建 BayeStab Web 服务器,可在以下位置找到:http://www.bayestab.com。这项工作的代码可在以下网址获得:https://github.com/HongzhouTang/BayeStab。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号