您现在的位置:首页>美国卫生研究院文献>Biophysical Journal

期刊信息

  • 期刊名称:

    -

  • 刊频: Twenty-four no. a year 2006-
  • NLM标题: Biophys J
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<1/20>
23844条结果
  • 机译 基于跳跃距离的粒子轨迹参数推理方案
    摘要:
  • 机译 大分子拥挤和表面吸附对线性蛋白原纤维形成的联合影响的平衡模型
    摘要:
  • 机译 温度补偿的昼夜节律振荡中的非正弦波形
    摘要:Time series of biological rhythms are of various shapes. Here, we investigated the waveforms of circadian rhythms in gene-protein dynamics using a newly developed, to our knowledge, index to quantify the degree of distortion from a sinusoidal waveform. In general, most biochemical reactions accelerate with increasing temperature, but the period of circadian rhythms remains relatively stable with temperature change, a phenomenon known as “temperature compensation.” Despite extensive research, the mechanism underlying this remains unclear. To understand the mechanism, we used transcriptional-translational oscillator models for circadian rhythms in the fruit fly Drosophila and mammals. Given the assumption that reaction rates increase with temperature, mathematical analyses revealed that temperature compensation required waveforms that are more nonsinusoidal at higher temperatures. We then analyzed a post-translational oscillator (PTO) model of cyanobacteria circadian rhythms. Because the structure of the PTO is different from that of the transcriptional-translational oscillator, the condition for temperature compensation would be expected to differ. Unexpectedly, the computational analysis again showed that temperature compensation in the PTO model required a more nonsinusoidal waveform at higher temperatures. This finding held for both models even with a milder assumption that some reaction rates do not change with temperature, which is consistent with experimental evidence. Together, our theoretical analyses predict that the waveform of circadian gene-activity and/or protein phosphorylation rhythms would be more nonsinusoidal at higher temperatures, even when there are differences in the network structures.
  • 机译 快速限制中酰胺交换的准确预测揭示了凝血酶的构象
    摘要:Amide hydrogen/deuterium exchange mass spectrometry (HDXMS) of proteins has become extremely popular for identifying ligand-binding sites, protein-protein interactions, intrinsic disorder, and allosteric changes upon protein modification. Such phenomena are revealed when amide exchange is measured in the fast limit, that is, within a few minutes of exchange in deuterated buffer. The HDXMS data have a resolution of the length of peptides and are difficult to interpret because many different phenomena lead to changes in hydrogen/deuterium exchange. We present a quantitative analysis of accelerated molecular dynamics simulations that provides impressive agreement with peptide-length HDXMS data. Comparative analysis of thrombin and a single-point mutant reveals that the simulation analysis can distinguish the subtle differences in exchange due to mutation. In addition, the results provide a deeper understanding of the underlying changes in dynamics revealed by the HDXMS that extend far from the site of mutation.
  • 机译 CaMKII-肌动蛋白网络的结构动力学
    摘要:Calcium-calmodulin-dependent kinase II (CaMKII) has an important role in dendritic spine remodeling upon synaptic stimulation. Using fluorescence video microscopy and image analysis, we investigated the architectural dynamics of rhodamine-phalloidin stabilized filamentous actin (F-actin) networks cross-linked by CaMKII. We used automated image analysis to identify F-actin bundles and crossover junctions and developed a dimensionless metric to characterize network architecture. Similar networks were formed by three different CaMKII species with a 10-fold length difference in the linker region between the kinase domain and holoenzyme hub, implying linker length is not a primary determinant of F-actin cross-linking. Electron micrographs showed that at physiological molar ratios, single CaMKII holoenzymes cross-linked multiple F-actin filaments at random, whereas at higher CaMKII/F-actin ratios, filaments bundled. Light microscopy established that the random network architecture resisted macromolecular crowding with polyethylene glycol and blocked ATP-powered compaction by myosin-II miniature filaments. Importantly, the networks disassembled after the addition of calcium-calmodulin and were then spaced within 3 min into compacted foci by myosin motors or more slowly (30 min) aggregated by crowding. Single-molecule total internal reflection fluorescence microscopy showed CaMKII dissociation from surface-immobilized globular actin exhibited a monoexponential dwell-time distribution, whereas CaMKII bound to F-actin networks had a long-lived fraction, trapped at crossover junctions. Release of CaMKII from F-actin, triggered by calcium-calmodulin, was too rapid to measure with flow-cell exchange (<20 s). The residual bound fraction was reduced substantially upon addition of an N-methyl-D-aspartate receptor peptide analog but not ATP. These results provide mechanistic insights to CaMKII-actin interactions at the collective network and single-molecule level. Our findings argue that CaMKII-actin networks in dendritic spines maintain spine size against physical stress. Upon synaptic stimulation, CaMKII is disengaged by calcium-calmodulin, triggering network disassembly, expansion, and subsequent compaction by myosin motors with kinetics compatible with the times recorded for the poststimulus changes in spine volume.
  • 机译 脊椎动物横纹肌肌丝中的新型调控元件-谁知道
    摘要:
  • 机译 在盐溶液中建模双链RNA的结构,稳定性和灵活性
    摘要:Double-stranded (ds) RNAs play essential roles in many processes of cell metabolism. The knowledge of three-dimensional (3D) structure, stability, and flexibility of dsRNAs in salt solutions is important for understanding their biological functions. In this work, we further developed our previously proposed coarse-grained model to predict 3D structure, stability, and flexibility for dsRNAs in monovalent and divalent ion solutions through involving an implicit structure-based electrostatic potential. The model can make reliable predictions for 3D structures of extensive dsRNAs with/without bulge/internal loops from their sequences, and the involvement of the structure-based electrostatic potential and corresponding ion condition can improve the predictions for 3D structures of dsRNAs in ion solutions. Furthermore, the model can make good predictions for thermal stability for extensive dsRNAs over the wide range of monovalent/divalent ion concentrations, and our analyses show that the thermally unfolding pathway of dsRNA is generally dependent on its length as well as its sequence. In addition, the model was employed to examine the salt-dependent flexibility of a dsRNA helix, and the calculated salt-dependent persistence lengths are in good accordance with experiments.
  • 机译 不受约束的QM / MM动力学过程中野生型NRas蛋白和Q61突变体中的水分布
    摘要:Point mutations in p21ras are associated with ∼30% of human tumors by disrupting its GTP hydrolysis cycle, which is critical to its molecular switch function in cellular signaling pathways. In this work, we investigate the impact of Gln 61 substitutions in the structure of the p21N-ras active site and particularly focus on water reorganization around GTP, which appears to be crucial to evaluate favorable and unfavorable hydration sites for hydrolysis. The NRas-GTP complex is analyzed using a hybrid quantum mechanics/molecular mechanics approach, treating for the first time to our knowledge transient water molecules at the ab initio level and leading to results that account for the electrostatic coupling between the protein complex and the solvent. We show that for the wild-type protein, water molecules are found around the GTP γ-phosphate group, forming an arch extended from residues 12 to 35. Two density peaks are observed, supporting previous results that suggest the presence of two water molecules in the active site, one in the vicinity of residue 35 and a second one stabilized by hydrogen bonds formed with nitrogen backbone atoms of residues 12 and 60. The structural changes observed in NRas Gln 61 mutants result in the drastic delocalization of water molecules that we discuss. In mutants Q61H and Q61K, for which water distribution is overlocalized next to residue 60, the second density peak supports the hypothesis of a second water molecule. We also conclude that Gly 60 indirectly participates in GTP hydrolysis by correctly positioning transient water molecules in the protein complex and that Gln 61 has an indirect steric effect in stabilizing the preorganized catalytic site.
  • 机译 阿霉素对类似弹力蛋白多肽的液体相变特性的影响
    摘要:The lower critical solution temperature (LCST) of the thermo-responsive engineered elastin-like polypeptide (ELP) biopolymer is being exploited for the thermal targeted delivery of doxorubicin (Dox) to solid tumors. We examine the impact of Dox labeling on the thermodynamic and hydrodynamic behavior of an ELP drug carrier and how Dox influences the liquid-liquid phase separation (LLPS). Turbidity, dynamic light scattering (DLS), and differential scanning calorimetry measurements show that ELP undergoes a cooperative liquid-liquid phase separation from a soluble to insoluble coacervated state that is enhanced by Dox labeling. Circular dichroism measurements show that below the LCST ELP consists of both random coils and temperature-dependent β-turn structures. Labeling with Dox further enhances β-turn formation. DLS measurements reveal a significant increase in the hydrodynamic radius of ELP below the LCST consistent with weak self-association. Dox-labeled SynB1-ELP1 (Dox-ELP) has a significant increase in the hydrodynamic radius by DLS measurements that is consistent with stable oligomers and, at high Dox-ELP concentrations, micelle structures. Enhanced association by Dox-ELP is confirmed by sedimentation velocity analytical ultracentrifugation measurements. Both ELP self-association and the ELP inverse phase transition are entropically driven with positive changes in enthalpy and entropy. We show by turbidity and DLS that the ELP phase transition is monophasic, whereas mixtures of ELP and Dox-ELP are biphasic, with Dox-labeled ELP phase changing first and unlabeled ELP partitioning into the coacervate as the temperature is raised. DLS reveals a complex growth in droplet sizes consistent with coalescence and fusion of liquid droplets. Differential scanning calorimetry measurements show a −11 kcal/mol change in enthalpy for Dox-ELP coacervation relative to the unlabeled ELP, consistent with droplet formation being stabilized by favorable enthalpic interactions. We propose that the ELP phase change is initiated by ELP self-association, enhanced by increased Dox-ELP oligomer and micelle formation and stabilized by favorable enthalpic interactions in the liquid droplets.
  • 机译 封闭构象的预测及对膜酶LpxR机理的认识
    摘要:Covalent modification of outer membrane lipids of Gram-negative bacteria can impact the ability of the bacterium to develop resistance to antibiotics as well as modulating the immune response of the host. The enzyme LpxR from Salmonella typhimurium is known to deacylate lipopolysaccharide molecules of the outer membrane; however, the mechanism of action is unknown. Here, we employ molecular dynamics and Monte Carlo simulations to study the conformational dynamics and substrate binding of LpxR in representative outer membrane models as well as detergent micelles. We examine the roles of conserved residues and provide an understanding of how LpxR binds its substrate. Our simulations predict that the catalytic H122 must be Nε-protonated for a single water molecule to occupy the space between it and the scissile bond, with a free binding energy of −8.5 kcal mol−1. Furthermore, simulations of the protein within a micelle enable us to predict the structure of the putative “closed” protein. Our results highlight the need for including dynamics, a representative environment, and the consideration of multiple tautomeric and rotameric states of key residues in mechanistic studies; static structures alone do not tell the full story.
  • 机译 单个胶原蛋白的环境控制曲率
    摘要:The predominant structural protein in vertebrates is collagen, which plays a key role in extracellular matrix and connective tissue mechanics. Despite its prevalence and physical importance in biology, the mechanical properties of molecular collagen are far from established. The flexibility of its triple helix is unresolved, with descriptions from different experimental techniques ranging from flexible to semirigid. Furthermore, it is unknown how collagen type (homo- versus heterotrimeric) and source (tissue derived versus recombinant) influence flexibility. Using SmarTrace, a chain-tracing algorithm we devised, we performed statistical analysis of collagen conformations collected with atomic force microscopy to determine the protein’s mechanical properties. Our results show that types I, II, and III collagens—the key fibrillar varieties—exhibit similar molecular flexibilities. However, collagen conformations are strongly modulated by salt, transitioning from compact to extended as KCl concentration increases in both neutral and acidic pH. Although analysis with a standard worm-like chain model suggests that the persistence length of collagen can attain a wide range of values within the literature range, closer inspection reveals that this modulation of collagen’s conformational behavior is not due to changes in flexibility but rather arises from the induction of curvature (either intrinsic or induced by interactions with the mica surface). By modifying standard polymer theory to include innate curvature, we show that collagen behaves as an equilibrated curved worm-like chain in two dimensions. Analysis within the curved worm-like chain model shows that collagen’s curvature depends strongly on pH and salt, whereas its persistence length does not. Thus, we find that triple-helical collagen is well described as semiflexible irrespective of source, type, pH, and salt environment. These results demonstrate that collagen is more flexible than its conventional description as a rigid rod, which may have implications for its cellular processing and secretion.
  • 机译 模拟揭示神经元网罗复杂的解压缩机制中的多种中间体。
    摘要:The assembling of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein complex is a fundamental step in neuronal exocytosis, and it has been extensively studied in the last two decades. Yet, many details of this process remain inaccessible with the current experimental space and time resolution. Here, we study the zipping mechanism of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex computationally by using a coarse-grained model. We explore the different pathways available and analyze their dependence on the computational model employed. We reveal and characterize multiple intermediate states, in agreement with previous experimental findings. We use our model to analyze the influence of single-residue mutations on the thermodynamics of the folding process.
  • 机译 金纳米棒增强近红外神经刺激的理论研究
    摘要:Over the past decade, optical methods have emerged for modulating brain functions as an alternative to electrical stimulation. Among various optical techniques, infrared neural stimulation has been effective via a thermal mechanism enabling focused and noninvasive stimulation without any genetic manipulation, but it results in bulk heating of neural tissue. Recently, it has been shown that neural cells can be activated more efficiently by pulsed near-infrared (NIR) light delivered to gold nanorods (GNRs) near the neural cells. Despite its potential, however, the biophysical mechanism underlying this GNR-enhanced NIR stimulation has not been clearly explained yet. Here, we propose an integrative and quantitative model to elucidate the mechanism by modeling heat generated from interaction between NIR light and GNRs, the temperature-dependent ion channels (transient receptor potential vanilloid 1; TRPV1) in the neuronal membrane, and a heat-induced capacitive current through the membrane. Our results show that NIR pulses induce abrupt temperature elevation near the neuronal membrane and lead to both the TRPV1-channel and capacitive currents. Both current sources synergistically increase the membrane potential and elicit an action potential, and which mechanism is dominant depends on conditions such as the laser pulse duration and TRPV1 channel density. Although the TRPV1 mechanism dominates in most cases we tested, the capacitive current makes a larger contribution when a very short laser pulse is illuminated on neural cells with relatively low TRPV1 channel densities.
  • 机译 时间分辨的Laurdan荧光揭示了对膜粘度和水合水平的见解
    摘要:Membrane viscosity and hydration levels characterize the biophysical properties of biological membranes and are reflected in the rate and extent of solvent relaxation, respectively, of environmentally sensitive fluorophores such as Laurdan. Here, we first developed a method for a time-resolved general polarization (GP) analysis with fluorescence-lifetime imaging microscopy that captures both the extent and rate of Laurdan solvent relaxation. We then conducted time-resolved GP measurements with Laurdan-stained model membranes and cell membranes. These measurements revealed that cholesterol levels in lipid vesicles altered membrane hydration and viscosity, whereas curvature had little effect on either parameter. We also applied the method to the plasma membrane of live cells using a supercritical angle fluorescence objective, to our knowledge the first time fluorescence-lifetime imaging microscopy images were generated with supercritical angle fluorescence. Here, we found that local variations in membrane cholesterol most likely account for the heterogeneity of Laurdan lifetime in plasma membrane. In conclusion, time-resolved GP measurements provide additional insights into the biophysical properties of membranes.
  • 机译 使用磷脂酰丝氨酸脱羧酶制备不对称脂质体
    摘要:Lipid asymmetries between the outer and inner leaflet of the lipid bilayer exist in nearly all biological membranes. Although living cells spend great effort to adjust and maintain these asymmetries, little is known about the biophysical phenomena within asymmetric membranes and their role in cellular function. One reason for this lack of insight into such a fundamental membrane property is the fact that the majority of model-membrane studies have been performed on symmetric membranes. Our aim is to overcome this problem by employing a targeted, enzymatic reaction to prepare asymmetric liposomes with phosphatidylserine (PS) primarily in the inner leaflet. To achieve this goal, we use a recombinant version of a water soluble PS decarboxylase from Plasmodium knowlesi, which selectively decarboxylates PS in the outer leaflet, converting it to phosphatidylethanolamine. The extent of decarboxylation is quantified using high-performance thin-layer chromatography, and the local concentration of anionic PS in the outer leaflet is monitored in terms of the ζ potential. Starting, for example, with 21 mol % 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine sodium salt, the assay leads to liposomes with 21 mol % in the inner and 6 mol % PS in the outer leaflet. This asymmetry persists virtually unchanged for at least 4 days at 20°C and at least 2 days at 40°C. The use of a highly specific enzyme carries the advantage that a minor component such as PS can be adjusted without affecting or being affected by the other lipid species present in the model membrane. The phenomena governing the residual outside PS content are addressed but warrant further study.
  • 机译 肽-脂质相互作用位点影响囊泡对抗菌肽的反应。
    摘要:This article presents coarse-grained molecular dynamics simulations of pore-forming antimicrobial peptide melittin and its interactions with vesicles composed of a mixture of zwitterionic and anionic phospholipids. Besides creating holes in the membrane, the adsorption of melittin also induces vesicle budding, which can develop into vesiculation at high peptide concentrations, as well as vesicle invagination, which can eventually result in a corrugated membrane surface. These rich morphology changes are mediated by the curvature of the vesicles and the peptide concentration. Highly curved vesicles favor the recruitment of melittins with a higher density of binding sites. The peptides mainly penetrate into the membrane surface in monomers via hydrophobic interaction. Lowly curved vesicles recruit melittins with a low density of binding sites. Surplus peptides are prone to form oligomers and shallowly adsorb on the surface of membrane via electrostatic interaction. The penetration of monomers induces membrane pore formation and positive membrane curvature, which promote vesicle budding. The adsorption of oligomers induces negative membrane curvature, which promotes vesicle invagination. This work demonstrates that antimicrobial peptides adopt multiple actions to destroy bacterial membranes.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号