您现在的位置:首页>美国卫生研究院文献>Biochemical Journal

期刊信息

  • 期刊名称:

    -

  • 刊频: Twenty eight no. a year
  • NLM标题: Biochem J
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<1/20>
49934条结果
  • 机译 蛋白激酶抑制剂的选择性:进一步更新
    摘要:The specificities of 65 compounds reported to be relatively specific inhibitors of protein kinases have been profiled against a panel of 70–80 protein kinases. On the basis of this information, the effects of compounds that we have studied in cells and other data in the literature, we recommend the use of the following small-molecule inhibitors: SB 203580/SB202190 and BIRB 0796 to be used in parallel to assess the physiological roles of p38 MAPK (mitogen-activated protein kinase) isoforms, PI-103 and wortmannin to be used in parallel to inhibit phosphatidylinositol (phosphoinositide) 3-kinases, PP1 or PP2 to be used in parallel with Src-I1 (Src inhibitor-1) to inhibit Src family members; PD 184352 or PD 0325901 to inhibit MKK1 (MAPK kinase-1) or MKK1 plus MKK5, Akt-I-1/2 to inhibit the activation of PKB (protein kinase B/Akt), rapamycin to inhibit TORC1 [mTOR (mammalian target of rapamycin)–raptor (regulatory associated protein of mTOR) complex], CT 99021 to inhibit GSK3 (glycogen synthase kinase 3), BI-D1870 and SL0101 or FMK (fluoromethylketone) to be used in parallel to inhibit RSK (ribosomal S6 kinase), D4476 to inhibit CK1 (casein kinase 1), VX680 to inhibit Aurora kinases, and roscovitine as a pan-CDK (cyclin-dependent kinase) inhibitor. We have also identified harmine as a potent and specific inhibitor of DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) in vitro. The results have further emphasized the need for considerable caution in using small-molecule inhibitors of protein kinases to assess the physiological roles of these enzymes. Despite being used widely, many of the compounds that we analysed were too non-specific for useful conclusions to be made, other than to exclude the involvement of particular protein kinases in cellular processes.
  • 机译 CFTR表达的表观遗传学特征通过染色质乙酰化通过复杂的内含子元件进行协调
    摘要:The CFTR (cystic fibrosis transmembrane conductance regulator) gene is a tightly regulated and differentially expressed transcript in many mucosal epithelial cell types. It appears that DNA sequence variations alone do not explain CFTR-related gastrointestinal disease patterns and that epigenetic modifiers influence CFTR expression. Our aim was to characterize the native chromatin environment in cultured cells for intestinal CFTR expression by determining the relationship between histone acetylation and occupation of CFTR by multiple transcription factors, through a common regulatory element. We used HDAC (histone deacetylase) inhibition and ChIP (chromatin immunoprecipitation) analyses to define regions associated with acute acetylation of histone at the CFTR locus. We identified a region within the first intron associated with acute acetylation of histone H4 as an epigenetic signature corresponding to an intestine-specific enhancer element for CFTR. DHS (DNase I-hypersensitivity) assays and ChIP were used to specify control elements and occupation by regulatory factors. Quantitative ChIP procedures indicate that HNF1α (hepatic nuclear factor 1α) and Cdx2 (caudal homeobox protein 2) occupy and regulate through a novel intronic enhancer element of CFTR and that Tcf4 (T-cell factor 4) overlaps the same DNA element. RNAi (RNA interference) of Tcf4 and HNF1α decreased intestinal cell CFTR expression, identifying these as positive regulatory factors and CFTR as a target for Wnt signalling. We have linked the acetylation signature of nucleosomal histones to active intestinal CFTR expression and occupation by transcription factors HNF1α, Cdx2 and Tcf4 which converge to modify chromatin architecture. These studies suggest the therapeutic potential of histone modification strategies, such as inhibition of HDAC activity, to treat CFTR-associated disease by selectively enhancing CFTR expression.
  • 机译 腺嘌呤核苷酸可调控热乙酸穆尔氏菌中CBS结构域的焦磷酸酶
    摘要:CBS (cystathionine β-synthase) domains are found in proteins from all kingdoms of life, and point mutations in these domains are responsible for a variety of hereditary diseases in humans; however, the functions of CBS domains are not well understood. In the present study, we cloned, expressed in Escherichia coli, and characterized a family II PPase (inorganic pyrophosphatase) from Moorella thermoacetica (mtCBS-PPase) that has a pair of tandem 60-amino-acid CBS domains within its N-terminal domain. Because mtCBS-PPase is a dimer and requires transition metal ions (Co2+ or Mn2+) for activity, it resembles common family II PPases, which lack CBS domains. The mtCBS-PPase, however, has lower activity than common family II PPases, is potently inhibited by ADP and AMP, and is activated up to 1.6-fold by ATP. Inhibition by AMP is competitive, whereas inhibition by ADP and activation by ATP are both of mixed types. The nucleotides are effective at nanomolar (ADP) or micromolar concentrations (AMP and ATP) and appear to compete for the same site on the enzyme. The nucleotide-binding affinities are thus 100–10000-fold higher than for other CBS-domain-containing proteins. Interestingly, genes encoding CBS-PPase occur most frequently in bacteria that have a membrane-bound H+-translocating PPase with a comparable PPi-hydrolysing activity. Our results suggest that soluble nucleotide-regulated PPases act as amplifiers of metabolism in bacteria by enhancing or suppressing ATP production and biosynthetic reactions at high and low [ATP]/([AMP]+[ADP]) ratios respectively.
  • 机译 人Ins(1,3,4,5,6)P5 2-激酶的细胞内定位
    摘要:InsP6 is an intracellular signal with several proposed functions that is synthesized by IP5K [Ins(1,3,4,5,6)P5 2-kinase]. In the present study, we overexpressed EGFP (enhanced green fluorescent protein)–IP5K fusion proteins in NRK (normal rat kidney), COS7 and H1299 cells. The results indicate that there is spatial microheterogeneity in the intracellular localization of IP5K that could also be confirmed for the endogenous enzyme. This may facilitate changes in InsP6 levels at its sites of action. For example, overexpressed IP5K showed a structured organization within the nucleus. The kinase was preferentially localized in euchromatin and nucleoli, and co-localized with mRNA. In the cytoplasm, the overexpressed IP5K showed locally high concentrations in discrete foci. The latter were attributed to stress granules by using mRNA, PABP [poly(A)-binding protein] and TIAR (TIA-1-related protein) as markers. The incidence of stress granules, in which IP5K remained highly concentrated, was further increased by puromycin treatment. Using FRAP (fluorescence recovery after photobleaching) we established that IP5K was actively transported into the nucleus. By site-directed mutagenesis we identified a nuclear import signal and a peptide segment mediating the nuclear export of IP5K.
  • 机译 确定负责釉蛋白原与CD63和LAMP1相互作用的蛋白质区域
    摘要:The enamel matrix protein amelogenin is secreted by ameloblasts into the extracellular space to guide the formation of highly ordered hydroxyapatite mineral crystallites, and, subsequently, is almost completely removed during mineral maturation. Amelogenin interacts with the transmembrane proteins CD63 and LAMP (lysosome-associated membrane protein) 1, which are involved in endocytosis. Exogenously added amelogenin has been observed to move rapidly into CD63/LAMP1-positive vesicles in cultured cells. In the present study, we demonstrate the protein region defined by amino acid residues 103–205 for CD63 interacts not only with amelogenin, but also with other enamel matrix proteins (ameloblastin and enamelin). A detailed characterization of binding regions in amelogenin, CD63 and LAMP1 reveals that the amelogenin region defined by residues PLSPILPELPLEAW is responsible for the interaction with CD63 through residues 165–205, with LAMP1 through residues 226–251, and with the related LAMP2 protein through residues 227–259. We predict that the amelogenin binding region is: (i) hydrophobic; (ii) largely disordered; and (iii) accessible to the external environment. In contrast, the binding region of CD63 is likely to be organized in a ‘7’ shape within the mushroom-like structure of CD63 EC2 (extracellular domain 2). In vivo, the protein interactions between the secreted enamel matrix proteins with the membrane-bound proteins are likely to occur at the specialized secretory surfaces of ameloblast cells called Tomes' processes. Such protein–protein interactions may be required to establish short-term order of the forming matrix and/or to mediate feedback signals to the transcriptional machinery of ameloblasts and/or to remove matrix protein debris during enamel biomineralization.
  • 机译 通过选择还原性或氧化性条件来调节共价血红蛋白连接的形成,例如抗坏血酸过氧化物酶
    摘要:Previous work [Metcalfe, Ott, Patel, Singh, Mistry, Goff and Raven (2004) J. Am. Chem. Soc. 126, 16242–16248] has shown that the introduction of a methionine residue (S160M variant) close to the 2-vinyl group of the haem in ascorbate peroxidase leads to the formation of a covalent haem–methionine linkage under oxidative conditions (i.e. on reaction with H2O2). In the present study, spectroscopic, HPLC and mass spectrometric evidence is presented to show that covalent attachment of the haem to an engineered cysteine residue can also occur in the S160C variant, but, in this case, under reducing conditions analogous to those used in the formation of covalent links in cytochrome c. The data add an extra dimension to our understanding of haem to protein covalent bond formation because they show that different types of covalent attachment (one requiring an oxidative mechanism, the other a reductive pathway) are both accessible within same protein architecture.
  • 机译 蛋白激酶CK2亚基相互作用的小肽抑制剂的基于结构的设计
    摘要:X-ray crystallography studies, as well as live-cell fluorescent imaging, have recently challenged the traditional view of protein kinase CK2. Unbalanced expression of catalytic and regulatory CK2 subunits has been observed in a variety of tissues and tumours. Thus the potential intersubunit flexibility suggested by these studies raises the likely prospect that the CK2 holoenzyme complex is subject to disassembly and reassembly. In the present paper, we show evidence for the reversible multimeric organization of the CK2 holoenzyme complex in vitro. We used a combination of site-directed mutagenesis, binding experiments and functional assays to show that, both in vitro and in vivo, only a small set of primary hydrophobic residues of CK2β which contacts at the centre of the CK2α/CK2β interface dominates affinity. The results indicate that a double mutation in CK2β of amino acids Tyr188 and Phe190, which are complementary and fill up a hydrophobic pocket of CK2α, is the most disruptive to CK2α binding both in vitro and in living cells. Further characterization of hotspots in a cluster of hydrophobic amino acids centred around Tyr188–Phe190 led us to the structure-based design of small-peptide inhibitors. One conformationally constrained 11-mer peptide (Pc) represents a unique CK2β-based small molecule that was particularly efficient (i) to antagonize the interaction between the CK2 subunits, (ii) to inhibit the assembly of the CK2 holoenzyme complex, and (iii) to strongly affect its substrate preference.
  • 机译 连接蛋白43的C末端在高尔基体和间隙连接中采用不同的构象,如用结构特异性抗体检测到的那样
    摘要:The C-terminus of the most abundant and best-studied gap-junction protein, connexin43, contains multiple phosphorylation sites and protein-binding domains that are involved in regulation of connexin trafficking and channel gating. It is well-documented that SDS/PAGE of NRK (normal rat kidney) cell lysates reveals at least three connexin43-specific bands (P0, P1 and P2). P1 and P2 are phosphorylated on multiple, unidentified serine residues and are found primarily in gap-junction plaques. In the present study we prepared monoclonal antibodies against a peptide representing the last 23 residues at the C-terminus of connexin43. Immunofluorescence studies showed that one antibody (designated CT1) bound primarily to connexin43 present in the Golgi apparatus, whereas the other antibody (designated IF1) labelled predominately connexin43 present in gap junctions. CT1 immunoprecipitates predominantly the P0 form whereas IF1 recognized all three bands. Peptide mapping, mutational analysis and protein–protein interaction experiments revealed that unphosphorylated Ser364 and/or Ser365 are critical for CT1 binding. The IF1 paratope binds to residues Pro375–Asp379 and requires Pro375 and Pro377. These proline residues are also necessary for ZO-1 interaction. These studies indicate that the conformation of Ser364/Ser365 is important for intracellular localization, whereas the tertiary structure of Pro375–Asp379 is essential in targeting and regulation of gap junctional connexin43.
  • 机译 U3小核仁核糖核蛋白成分Imp4p是端粒DNA结合蛋白
    摘要:Imp4p is a component of U3 snoRNP (small nucleolar ribonucleoprotein) involved in the maturation of 18S rRNA. We have shown that Imp4p interacts with Cdc13p, a single-stranded telomere-binding protein involved in telomere maintenance. To understand the role of Imp4p in telomeres, we purified recombinant Imp4p protein and tested its binding activity towards telomeric DNA using electrophoretic mobility-shift assays. Our results showed that Imp4p bound specifically to single-stranded telomeric DNA in vitro. The interaction of Imp4p to telomeres in vivo was also demonstrated by chromatin immunoprecipitation experiments. Significantly, the binding of Imp4p to telomeres was not limited to yeast proteins, since the hImp4 (human Imp4) also bound to vertebrate single-stranded telomeric DNA. Thus we conclude that Imp4p is a novel telomeric DNA-binding protein that, in addition to its role in rRNA processing, might participate in telomere function.
  • 机译 斑马鱼唾液酸酶(Danio rerio)的分子克隆和生化特性
    摘要:Sialidases remove sialic acid residues from various sialo-derivatives. To gain further insights into the biological roles of sialidases in vertebrates, we exploited zebrafish (Danio rerio) as an animal model. A zebrafish transcriptome- and genome-wide search using the sequences of the human NEU polypeptides as templates revealed the presence of seven different genes related to human sialidases. neu1 and neu4 are the putative orthologues of the mammalian sialidases NEU1 and NEU4 respectively. Interestingly, the remaining genes are organized in clusters located on chromosome 21 and are all more closely related to mammalian sialidase NEU3. They were thus named neu3.1, neu3.2, neu3.3, neu3.4 and neu3.5. Using RT–PCR (reverse transcription–PCR) we detected transcripts for all genes, apart from neu3.4, and whole-mount in situ hybridization experiments show a localized expression pattern in gut and lens for neu3.1 and neu4 respectively. Transfection experiments in COS7 (monkey kidney) cells demonstrate that Neu3.1, Neu3.2, Neu3.3 and Neu4 zebrafish proteins are sialidase enzymes. Neu3.1, Neu3.3 and Neu4 are membrane-associated and show a very acidic pH optimum below 3.0, whereas Neu3.2 is a soluble sialidase with a pH optimum of 5.6. These results were further confirmed by subcellular localization studies carried out using immunofluorescence. Moreover, expression in COS7 cells of these novel zebrafish sialidases (with the exception of Neu3.2) induces a significant modification of the ganglioside pattern, consistent with the results obtained with membrane-associated mammalian sialidases. Overall, the redundancy of sialidases together with their expression profile and their activity exerted on gangliosides of living cells indicate the biological relevance of this class of enzymes in zebrafish.
  • 机译 广泛使用的溴化阻燃剂四溴双酚A(TBBPA)是SERCA Ca2 +泵的有效抑制剂
    摘要:TBBPA (tetrabromobisphenol A) is currently the most widely used type of BFR (brominated flame retardant) employed to reduce the combustibility of a large variety of electronic and other manufactured products. Recent studies have indicated that BFRs, including TBBPA, are bio-accumulating within animal and humans. BFRs including TBBPA have also been shown to be cytotoxic and potentially endocrine-disrupting to a variety of cells in culture. Furthermore, TBBPA has specifically been shown to cause disruption of Ca2+ homoeostasis within cells, which may be the underlying cause of its cytotoxicity. In this study, we have demonstrated that TBBPA is a potent non-isoform-specific inhibitor of the SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase) (apparent Ki 0.46–2.3 μM), thus we propose that TBBPA inhibition of SERCA contributes in some degree to Ca2+ signalling disruption. TBBPA binds directly to the SERCA without the need to partition into the phospholipid bilayer. From activity results and Ca2+-induced conformational results, it appears that the major effect of TBBPA is to decrease the SERCA affinity for Ca2+ (increasing the Kd from approx. 1 μM to 30 μM in the presence of 10 μM TBBPA). Low concentrations of TBBPA can quench the tryptophan fluorescence of the SERCA and this quenching can be reversed by BHQ [2,5-di-(t-butyl)-1,4-hydroquinone] and 4-n-nonylphenol, but not thapsigargin, indicating that TBBPA and BHQ may be binding to similar regions in the SERCA.
  • 机译 从结核分枝杆菌输出的甘油单酸酯脂肪酶的表征可能与宿主细胞膜脂质的代谢有关
    摘要:The Rv0183 gene of the Mycobacterium tuberculosis H37Rv strain, which has been implicated as a lysophospholipase, was cloned and expressed in Escherichia coli. The purified Rv0183 protein did not show any activity when lysophospholipid substrates were used, but preferentially hydrolysed monoacylglycerol substrates with a specific activity of 290 units·mg−1 at 37 °C. Rv0183 hydrolyses both long chain di- and triacylglycerols, as determined using the monomolecular film technique, although the turnover was lower than with MAG (monoacyl-glycerol). The enzyme shows an optimum activity at pH values ranging from 7.5 to 9.0 using mono-olein as substrate and is inactivated by serine esterase inhibitors such as E600, PMSF and tetrahydrolipstatin. The catalytic triad is composed of Ser110, Asp226 and His256 residues, as confirmed by the results of site-directed mutagenesis. Rv0183 shows 35% sequence identity with the human and mouse monoglyceride lipases and well below 15% with the other bacterial lipases characterized so far. Homologues of Rv0183 can be identified in other mycobacterial genomes such as Mycobacterium bovis, Mycobacterium smegmatis, and even Mycobacterium leprae, which is known to contain a low number of genes involved in the replication process within the host cells. The results of immunolocalization studies performed with polyclonal antibodies raised against the purified recombinant Rv0183 suggested that the enzyme was present only in the cell wall and culture medium of M. tuberculosis. Our results identify Rv0183 as the first exported lipolytic enzyme to be characterized in M. tuberculosis and suggest that Rv0183 may be involved in the degradation of the host cell lipids.
  • 机译 人铁调节蛋白2容易在其特定结构域裂解:该蛋白的血红素结合特性的后果
    摘要:Mammalian IRPs (iron regulatory proteins), IRP1 and IRP2, are cytosolic RNA-binding proteins that post-transcriptionally control the mRNA of proteins involved in storage, transport, and utilization of iron. In iron-replete cells, IRP2 undergoes degradation by the ubiquitin/proteasome pathway. Binding of haem to a 73aa-Domain (73-amino-acid domain) that is unique in IRP2 has been previously proposed as the initial iron-sensing mechanism. It is shown here that recombinant IRP2 and the 73aa-Domain are sensitive to proteolysis at the same site. NMR results suggest that the isolated 73aa-Domain is not structured. Iron-independent cleavage of IRP2 within the 73aa-Domain also occurs in lung cancer (H1299) cells. Haem interacts with a cysteine residue only in truncated forms of the 73aa-Domain, as shown by a series of complementary physicochemical approaches, including NMR, EPR and UV–visible absorption spectroscopy. In contrast, the cofactor is not ligated by the same residue in the full-length peptide or intact IRP2, although non-specific interaction occurs between these molecular forms and haem. Therefore it is unlikely that the iron-dependent degradation of IRP2 is mediated by haem binding to the intact 73aa-Domain, since the sequence resembling an HRM (haem-regulatory motif) in the 73aa-Domain does not provide an axial ligand of the cofactor unless this domain is cleaved.
  • 机译 玉米中硫胺素生物合成中涉及的thi3基因的分子表征:具有4-氨基-5-羟甲基-2-甲基嘧啶(磷酸)激酶和硫胺素单磷酸合酶活性的重组双功能蛋白的cDNA序列,酶学和结构特性
    摘要:A thiamine biosynthesis gene, thi3, from maize Zea mays has been identified through cloning and sequencing of cDNA and heterologous overexpression of the encoded protein, THI3, in Escherichia coli. The recombinant THI3 protein was purified to homogeneity and shown to possess two essentially different enzymatic activities of HMP(-P) [4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate)] kinase and TMP (thiamine monophosphate) synthase. Both activities were characterized in terms of basic kinetic constants, with interesting findings that TMP synthase is uncompetitively inhibited by excess of one of the substrates [HMP-PP (HMP diphosphate)] and ATP. A bioinformatic analysis of the THI3 sequence suggested that these activities were located in two distinct, N-terminal kinase and C-terminal synthase, domains. Models of the overall folds of THI3 domains and the arrangements of active centre residues were obtained with the SWISS-MODEL protein modelling server, on the basis of the known three-dimensional structures of Salmonella enterica serotype Typhimurium HMP(-P) kinase and Bacillus subtilis TMP synthase. The essential roles of Gln98 and Met134 residues for HMP kinase activity and of Ser444 for TMP synthase activity were experimentally confirmed by site-directed mutagenesis.
  • 机译 需要转录因子Nrf1中的NHB1(N末端同源框1)序列将其锚定到内质网并使其天冬酰胺糖基化
    摘要:Nrf1 (nuclear factor-erythroid 2 p45 subunit-related factor 1) is negatively controlled by its NTD (N-terminal domain) that lies between amino acids 1 and 124. This domain contains a leucine-rich sequence, called NHB1 (N-terminal homology box 1; residues 11–30), which tethers Nrf1 to the ER (endoplasmic reticulum). Electrophoresis resolved Nrf1 into two major bands of approx. 95 and 120 kDa. The 120-kDa Nrf1 form represents a glycosylated protein that was present exclusively in the ER and was converted into a substantially smaller polypeptide upon digestion with either peptide:N-glycosidase F or endoglycosidase H. By contrast, the 95-kDa Nrf1 form did not appear to be glycosylated and was present primarily in the nucleus. NHB1 and its adjacent residues conform to the classic tripartite signal peptide sequence, comprising n-, h- and c-regions. The h-region (residues 11–22), but neither the n-region (residues 1–10) nor the c-region (residues 23–30), is required to direct Nrf1 to the ER. Targeting Nrf1 to the ER is necessary to generate the 120-kDa glycosylated protein. The n-region and c-region are required for correct membrane orientation of Nrf1, as deletion of residues 2–10 or 23–30 greatly increased its association with the ER and the extent to which it was glycosylated. The NHB1 does not contain a signal peptidase cleavage site, indicating that it serves as an ER anchor sequence. Wild-type Nrf1 is glycosylated through its Asn/Ser/Thr-rich domain, between amino acids 296 and 403, and this modification was not observed in an Nrf1Δ299–400 mutant. Glycosylation of Nrf1 was not necessary to retain it in the ER.
  • 机译 结合苯并噻唑核心支架的分子抑制恶性疟原虫的N-肉豆蔻酰转移酶
    摘要:Recombinant N-myristoyltransferase of Plasmodium falciparum (termed PfNMT) has been used in the development of a SPA (scintillation proximity assay) suitable for automation and high-throughput screening of inhibitors against this enzyme. The ability to use the SPA has been facilitated by development of an expression and purification system which yields considerably improved quantities of soluble active recombinant PfNMT compared with previous studies. Specifically, yields of pure protein have been increased from 12 μg·l−1 to >400 μg·l−1 by use of a synthetic gene with codon usage optimized for expression in an Escherichia coli host. Preliminary small-scale ‘piggyback’ inhibitor studies using the SPA have identified a family of related molecules containing a core benzothiazole scaffold with IC50 values <50 μM, which demonstrate selectivity over human NMT1. Two of these compounds, when tested against cultured parasites in vitro, reduced parasitaemia by >80% at a concentration of 10 μM.
  • 机译 Fortilin在体内结合Ca2 +并阻断Ca2 +依赖性凋亡
    摘要:Fortilin, a 172-amino-acid polypeptide present both in the cytosol and nucleus, possesses potent anti-apoptotic activity. Although fortilin is known to bind Ca2+, the biochemistry and biological significance of such an interaction remains unknown. In the present study we report that fortilin must bind Ca2+ in order to protect cells against Ca2+-dependent apoptosis. Using a standard Ca2+-overlay assay, we first validated that full-length fortilin binds Ca2+ and showed that the N-terminus (amino acids 1–72) is required for its Ca2+-binding. We then used flow dialysis and CD spectropolarimetry assays to demonstrate that fortilin binds Ca2+ with a dissociation constant (Kd) of approx. 10 μM and that the binding of fortilin to Ca2+ induces a significant change in the secondary structure of fortilin. In order to evaluate the impact of the binding of fortilin to Ca2+ in vivo, we measured intracellular Ca2+ levels upon thapsigargin challenge and found that the lack of fortilin in the cell results in the exaggerated elevation of intracellular Ca2+ in the cell. We then tested various point mutants of fortilin for their Ca2+ binding and identified fortilin(E58A/E60A) to be a double-point mutant of fortilin lacking the ability of Ca2+-binding. We then found that wild-type fortilin, but not fortilin(E58A/E60A), protected cells against thapsigargin-induced apoptosis, suggesting that the binding of fortilin to Ca2+ is required for fortilin to protect cells against Ca2+-dependent apoptosis. Together, these results suggest that fortilin is an intracellular Ca2+ scavenger, protecting cells against Ca2+-dependent apoptosis by binding and sequestering Ca2+ from the downstream Ca2+-dependent apoptotic pathways.
  • 机译 磷酸二酯酶4的四个亚家族的结构提供了对其抑制剂选择性的了解
    摘要:PDE4 (phosphodiesterase-4)-selective inhibitors have attracted much attention as potential therapeutics for the treatment of both depression and major inflammatory diseases, but their practical application has been compromised by side effects. A possible cause for the side effects is that current PDE4-selective inhibitors similarly inhibit isoforms from all four PDE4 subfamilies. The development of PDE4 subfamily-selective inhibitors has been hampered by a lack of structural information. In the present study, we rectify this by providing the crystal structures of the catalytic domains of PDE4A, PDE4B and PDE4D in complex with the PDE4 inhibitor NVP {4-[8-(3-nitrophenyl)-[1,7]naphthyridin-6-yl]benzoic acid} as well as the unliganded PDE4C structure. NVP binds in the same conformation to the deep cAMP substrate pocket and interacts with the same residues in each instance. However, detailed structural comparison reveals significant conformational differences. Although the active sites of PDE4B and PDE4D are mostly comparable, PDE4A shows significant displacements of the residues next to the invariant glutamine residue that is critical for substrate and inhibitor binding. PDE4C appears to be more distal from other PDE4 subfamilies, with certain key residues being disordered. Our analyses provide the first structural basis for the development of PDE4 subfamily-selective inhibitors.
  • 机译 PAI-1和PAI-2在乳腺癌细胞中差异细胞信号传导的结构基础
    摘要:PAI-1 and PAI-2 (plasminogen-activator inibitor types 1 and 2) are inhibitors of cell surface uPA (urokinase plasminogen activator). However, tumour expression of PAI-1 and PAI-2 correlates with poor compared with good patient prognosis in breast cancer respectively. This biological divergence may be related to additional functional roles of PAI-1. For example, the inhibition of uPA by PAI-1 reveals a cryptic high-affinity site within the PAI-1 moiety for the VLDLr (very-low-density-lipoprotein receptor), which sustains cell signalling events initiated by binding of uPA to its receptor. These interactions and subsequent signalling events promote proliferation of breast cancer cells. Biochemical and structural analyses show that, unlike PAI-1, the PAI-2 moiety of uPA–PAI-2 does not contain a high-affinity-binding site for VLDLr, although uPA–PAI-2 is still efficiently endocytosed via this receptor in breast cancer cells. Furthermore, global protein tyrosine phosphorylation events were not sustained by uPA–PAI-2 and cell proliferation was not affected. We thus propose a structurally based mechanism for these differences between PAI-1 and PAI-2 and suggest that PAI-2 is able to inhibit and clear uPA activity without initiating mitogenic signalling events through VLDLr.
  • 机译 唾液酸酶NEU3是一种位于细胞表面和内体结构中的外周膜蛋白
    摘要:Sialidase NEU3 is also known as the plasma-membrane-associated form of mammalian sialidases, exhibiting a high substrate specificity towards gangliosides. In this respect, sialidase NEU3 modulates cell-surface biological events and plays a pivotal role in different cellular processes, including cell adhesion, recognition and differentiation. At the moment, no detailed studies concerning the subcellular localization of NEU3 are available, and the mechanism of its association with cellular membranes is still unknown. In the present study, we have demonstrated that sialidase NEU3, besides its localization at the plasma membrane, is present in intracellular structures at least partially represented by a subset of the endosomal compartment. Moreover, we have shown that NEU3 present at the plasma membrane is internalized and locates then to the recycling endosomal compartment. The enzyme is associated with the outer leaflet of the plasma membrane, as shown by selective cell-surface protein biotinylation. This evidence is in agreement with the ability of NEU3 to degrade gangliosides inserted into the plasma membrane of adjacent cells. Moreover, the mechanism of the protein association with the lipid bilayer was elucidated by carbonate extraction. Under these experimental conditions, we have succeeded in solubilizing NEU3, thus demonstrating that the enzyme is a peripheral membrane protein. In addition, Triton X-114 phase separation demonstrates further the hydrophilic nature of the protein. Overall, these results provide important information about the biology of NEU3, the most studied member of the mammalian sialidase family.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号