您现在的位置:首页>美国卫生研究院文献>Bioactive Materials

期刊信息

  • 期刊名称:

    -

  • 刊频: Quarterly
  • NLM标题:
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<1/10>
197条结果
  • 机译 典型可生物降解金属(Mg / Zn / Fe)在气管支气管狭窄中的体外降解及生物相容性评价
    摘要:Tracheobronchial obstruction in children due to benign stenosis or tracheobronchomalacia still remains a challenging matter of concern. Currently, there is 10%–20% complication rate in clinical treatment. The non-biodegradable property of silicone stents and nickel-titanium memory alloy stents take the primary responsibility for drawbacks including stimulating local granulation tissue proliferation, displacement, and stent-related infections. Permanent tracheobronchial stent will be a persistent foreign object for a long time, causing excessive secretion of tracheal mucosa, ulceration and even perforation, which is particularly unsuitable for young children with persistent tracheal growth. In this study, the degradation and biocompatibility performance of three typical biodegradable metals were investigated as potential tracheobronchial stent materials. The results exhibited that these materials showed different degradation behaviors in the simulating respiratory fluid environment compared with SBF. Except for pure iron group, high purity magnesium and zinc showed favorable cell adhesion and proliferation in three culture methodologies (direct culture, indirect culture and extraction culture). The proper corrosion rate and good biocompatibility indicated that high purity magnesium and zinc may be good candidates as tracheobronchial stent materials.
  • 机译 自组装肽生物材料及其生物医学应用
    摘要:Inspired by self-assembling peptides found in native proteins, deliberately designed engineered peptides have shown outstanding biocompatibility, biodegradability, and extracellular matrix-mimicking microenvironments. Assembly of the peptides can be triggered by external stimuli, such as electrolytes, temperature, and pH. The formation of nanostructures and subsequent nanocomposite materials often occur under physiological conditions. The respective properties of side chains in each amino acids provide numerous sites for chemical modification and conjugation choices of the peptides, enabling various resulting supramolecular nanostructures and hydrogels with adjustable mechanical and physicochemical properties. Moreover, additional functionalities can be easily induced into the hydrogels, including shear-thinning, bioactivity, self-healing, and shape memory. It further broaden the scope of application of self-assemble peptide materials. This review outlines designs of self-assembly peptide (β-sheet, α-helix, collagen-like peptides, elastin-like polypeptides, and peptide amphiphiles) with potential additional functionalities and their biomedical applications in bioprinting, tissue engineering, and drug delivery.
  • 机译 中性原子束技术对PEEK的表面生物活化
    摘要:Polyetheretherketone (PEEK) is an alternative to metallic implants and a material of choice in many applications, including orthopedic, spinal, trauma, and dental. While titanium (Ti) and Ti-alloys are widely used in many intraosseous implants due to its biocompatibility and ability to osseointegrate, negatives include stiffness which contributes to shear stress, radio-opacity, and Ti-sensitivity. Many surgeons prefer to use PEEK due to its biocompatibility, similar elasticity to bone, and radiolucency, however, due to its inert properties, it fails to fully integrate with bone. Accelerated Neutral Atom Beam (ANAB) technology has been successfully employed to demonstrate enhanced bioactivity of PEEK both in vitro and in vivo. In this study, we further characterize surfaces of PEEK modified by ANAB as well as elucidate attachment and genetic effects of dental pulp stem cells (DPSC) exposed to these surfaces. ANAB modification resulted in decreased contact angle at 72.9 ± 4.5° as compared to 92.4 ± 8.5° for control (p < 0.01) and a decreased average surface roughness, however with a nano-textured surface profile. ANAB treatment also increased the ability of DPSC attachment and proliferation with considerable genetic differences showing earlier progression towards osteogenic differentiation. This surface modification is achieved without adding a coating or changing the chemical composition of the PEEK material. Taken together, we show that ANAB processing of PEEK surface enhances the bioactivity of implantable medical devices without an additive or a coating.
  • 机译 聚多巴胺和胶原蛋白包被的微粉碎聚二甲基硅氧烷用于人间充质干细胞培养
    摘要:Natural tissues contain highly organized cellular architecture. One of the major challenges in tissue engineering is to develop engineered tissue constructs that promote cellular growth in physiological directionality. To address this issue, micro-patterned polydimethylsiloxane (PDMS) substrates have been widely used in cell sheet engineering due to their low microfabrication cost, higher stability, excellent biocompatibility, and most importantly, ability to guide cellular growth and patterning. However, the current methods for PDMS surface modification either require a complicated procedure or generate a non-uniform surface coating, leading to the production of poor-quality cell layers. A simple and efficient surface coating method is critically needed to improve the uniformity and quality of the generated cell layers. Herein, a fast, simple and inexpensive surface coating method was analyzed for its ability to uniformly coat polydopamine (PD) with or without collagen on micro-grated PDMS substrates without altering essential surface topographical features. Topographical feature, stiffness and cytotoxicity of these PD and/or collagen based surface coatings were further analyzed. Results showed that the PD-based coating method facilitated aligned and uniform cell growth, therefore holds great promise for cell sheet engineering as well as completely biological tissue biomanufacturing.
  • 机译 控释神经降压素丝素蛋白敷料改善糖尿病大鼠模型的伤口愈合
    摘要:Diabetic foot ulcers (DFU), which may lead to lower extremity amputation, is one of the severe and chronic complications of diabetic mellitus. This study aims to develop, and use dressings based on Silk fibroin (SF) as the scaffold material, gelatin microspheres (GMs) as the carrier for the neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing and NT as accelerate wound healing drug to treat DFU. We evaluated the wound healing processes and neo-tissue formation in rat diabetic model by macroscopic observation, histological observation (H&E staining and Masson's trichrome staining) and immunofluorescence analysis at 3, 7, 14, 21 and 28 post-operation days. Our results show that the NT/GMs/SF group performance the best not only in macroscopic healing and less scars in 28 post-operation days, but also in fibroblast accumulation in tissue granulation, collagen expression and deposition at the wound site. From release profiles, we can know the GMs are a good carrier for control release drugs. The SEM results shows that the NT/GMs/SF dressings have an average pore size are 40–80 μm and a porosity of ∼85%, this pore size is suit for wound healing regeneration. These results suggest that the NT/GMs/SF dressings may work as an effective support for control release NT to promote DFU wound healing.
  • 机译 磁响应水凝胶对软组织损伤的协同治疗
    摘要:Soft tissue injury is very common and associated with pain, tissue swelling and even malformation if not treated on time. Treating methods include cryotherapy, electrical therapy, ultrasound therapy and anti-inflammatory drug, but none of them is completely satisfying. In this work, for a better therapeutic effect, drug therapy and pulsed electromagnetic field (PEMF) therapy were combined. We constructed a drug delivery system using the tetra-PEG/agar hydrogel (PA). By incorporating Fe3O4 NPs into the hydrogel network, a magnetism-responsive property was achieved in the system. The cytotoxicity and in vivo study showed a good biocompatibility of the PA/Fe3O4 hydrogel. A magnetism-controlled release was attained by the incorporation of Fe3O4. Finally, in vivo study showed a better performance of the DS-loaded PA/Fe3O4 compared with the commercially available DS ointment regarding the recovery of the injured soft tissue. Therefore, this magnetism-responsive hydrogel may represent a promising alternative to treat soft tissue injury.
  • 机译 人间充质干细胞暴露于各种镁基物质降解产物时发生软骨形成的蛋白质组学分析
    摘要:Treatment of physeal fractures (15%–30% of all paediatric fractures) remains a challenge as in approximately 10% of the cases, significant growth disturbance may occur. Bioresorbable Magnesium-based implants represent a strategy to minimize damage (i.e., load support until bone healing without second surgery). Nevertheless, the absence of harmful effects of magnesium-implants and their degradation products on the growth plate should be confirmed. Here, the proteome of human mesenchymal stem cells undergoing chondrogenesis was evaluated when exposed to the products of various Magnesium-based materials degradation. The results of this study indicate that the materials induced regulation of proteins associated with cell chondrogenesis and cartilage formation, which should be beneficial for cartilage regeneration.
  • 机译 海洋微生物腐蚀与生物积垢的最新研究进展及海洋防腐与积垢的新方法
    摘要:Marine resources and industry have become one of the most important pillars in economic development all over the world. However, corrosion of materials is always the most serious problem to the infrastructure and equipment served in marine environment. Researchers have found that microbiologically influenced corrosion (MIC) and marine bio-fouling are two main mechanisms of marine corrosions due to the complicated marine environment and marine organisms. This article summarized the latest research progress about these two mechanisms and indicated that both MIC and marine bio-fouling are closely related to the biofilms on material surfaces formed by the marine microorganisms and their metabolites. As a result, to prevent the occurrence of MIC and bio-fouling, it is important to control the microorganisms in biofilms or prevent the adhesion and formation of biofilms. The traditional method of using chemical bactericide or antifoulant faces the problems of pollution and microorganism resistance. This article introduced four research approaches about the new tendency of applying new materials and technologies to cooperate with traditional chemicals to achieve better and longer effects with lower environment pollution through synergistic actions. Finally, some future research tendencies were proposed for whole marine anti-corrosion and anti-fouling areas.
  • 机译 磷酸钙涂层对金属植入物的生物功能化
    摘要:Metallic materials have been extensively applied in clinical practice due to their unique mechanical properties and durability. Recent years have witnessed broad interests and advances on surface functionalization of metallic implants for high-performance biofunctions. Calcium phosphates (CaPs) are the major inorganic component of bone tissues, and thus owning inherent biocompatibility and osseointegration properties. As such, they have been widely used in clinical orthopedics and dentistry. The new emergence of surface functionalization on metallic implants with CaP coatings shows promise for a combination of mechanical properties from metals and various biofunctions from CaPs. This review provides a brief summary of state-of-art of surface biofunctionalization on implantable metals by CaP coatings. We first glance over different types of CaPs with their coating methods and in vitro and in vivo performances, and then give insight into the representative biofunctions, i.e. osteointegration, corrosion resistance and biodegradation control, and antibacterial property, provided by CaP coatings for metallic implant materials.
  • 机译 溶液条件对羟基磷灰石形成的影响,以评估含B2O3的45S5生物活性玻璃的生物活性
    摘要:The effects of testing solutions and conditions on hydroxyapatite (HAp) formation as a means of in vitro bioactivity evaluation of B2O3 containing 45S5 bioactive glasses were systematically investigated. Four glass samples prepared by the traditional melt and quench process, where SiO2 in 45S5 was gradually replaced by B2O3 (up to 30%), were studied. Two solutions: the simulated body fluid (SBF) and K2HPO4 solutions were used as the medium for evaluating in vitro bioactivity through the formation of HAp on glass surface as a function of time. It was found that addition of boron oxide delayed the HAp formation in both SBF and K2HPO4 solutions, while the reaction between glass and the K2HPO4 solution is much faster as compared to SBF. In addition to the composition and medium effects, we also studied whether the solution treatments (e.g., adjusting to maintain a pH of 7.4, refreshing solution at certain time interval, and no disturbance during immersion) affect HAp formation. Fourier transform infrared spectrometer (FTIR) equipped with an attenuated total reflection (ATR) sampling technique and scanning electron microscopy (SEM) were conducted to identify HAp formation on glass powder surfaces and to observe HAp morphologies, respectively. The results show that refreshing solution every 24 h produced the fastest HAp formation for low boron-containing samples when SBF was used as testing solution, while no significant differences were observed when K2HPO4 solution was used. This study thus suggests the testing solutions and conditions play an important role on the in vitro bioactivity testing results and should be carefully considered when study materials with varying bioactivities.
  • 机译 含3D银的生物活性玻璃陶瓷支架的制备和多尺度表征
    摘要:In this work, we fabricated and characterized bioactive 3D glass-ceramic scaffolds with inherent antibacterial properties. The sol-gel (solution-gelation) technique and the sacrificial template method were applied for the fabrication of 3D highly porous scaffolds in the 58.6SiO2 - 24.9CaO - 7.2P2O5 - 4.2Al2O3 – 1.5Na2O −1.5K2O – 2.1Ag2O system (Ag-BG). This system is known for its advanced bioactive and antibacterial properties. The fabrication of 3D scaffolds has potential applications that impact tissue engineering. The study of the developed scaffolds from macro-characteristics to nano-, revealed a strong correlation between the macroscale properties such as antibacterial action, bioactivity with the microstructural characteristics such as elemental analysis, crystallinity. Elemental homogeneity, morphological, and microstructural characteristics of the scaffolds were studied by scanning electron microscopy associated with energy dispersive spectroscopy (SEM-EDS), transmittance electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and UV-visible spectroscopy methods. The compressive strength of the 3D scaffolds was measured within the range of values for glass-ceramic scaffolds with similar compositions, porosity, and pore size. The capability of the scaffolds to form an apatite-like phase was tested by immersing the scaffolds in simulated body fluid (SBF) and the antibacterial response against methicillin-resistant Staphylococcus aureus (MRSA) was studied. The formation of an apatite phase was observed after two weeks of immersion in SBF and the anti-MRSA effect occurs after both direct and indirect exposure.
  • 机译 通过含Ag,Sr和Si的微弧磷酸钙涂层对钛表面的改性
    摘要:The current research is devoted to the study of the modification of the titanium implants by the micro-arc oxidation with bioactive calcium phosphate coatings containing Ag or Sr and Si elements. The coatings’ microstructure, phase composition, morphology, physicochemical and biological properties were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Ag-containing and Sr-Si-incorporated coatings were formed in alkaline and acid electrolytes, respectively. The formation of the coatings occurred at different ranges of the applied voltages, which led to the significant difference in the coatings properties. The trace elements Ag, Sr and Si participated intensively in the plasma-chemical reactions of the micro-arc coatings formation. Ag-containing coatings demonstrated strong antibacterial effect against Staphylococcus aureus AТСС 6538-P. MTT in vitro test with 3T3-L1 fibroblasts showed no cytotoxicity appearance on Sr-Si-incorporated coatings.
  • 机译 Mg-Zn-Ca合金手术夹的体内外生物相容性
    摘要:At present, titanium (Ti) and its alloys are most commonly use in hemostasis clip clinical applications. However, the Ti Clip cannot be absorbed in human body and produce artifacts on computed tomography (CT), and induce clinically relevant hypersensitivity in patients. In order to overcome the drawbacks of the non-degradable Ti clips, an Mg–Zn–Ca alloy operative clip was fabricated by combining hot extrusion and blanking processing. In vitro and in vivo biocompatibility of Mg–Zn–Ca alloy operative clip were evaluated by L-929 Cells and SD rat model respectively. It was found that Mg–Zn–Ca alloy exhibited non-cytotoxic to L929 cells. In vivo implantation showed that the newly designed Mg–Zn–Ca clip can successfully ligated carotid artery and no blood leakage occurred post-surgery. During the period of the clip degradation, a small amount of H2 gas formation and no tissue inflammation around the clips were observed. The degradation rate of the clip near the heart ligated the arteries faster than that of clip far away the heart due do the effect of arterial blood. Histological analysis and various blood biochemical parameters in rat serum samples collected at different times after clip implantation showed no tissue inflammation around the clips.
  • 机译 双曲率人工管中高浓度次氯酸钠暴露的ProTaper金的疲劳强度
    摘要:This study aimed to evaluate and compare the fatigue resistance of ProTaper Gold (PTG) and ProTaper Universal (PTU) in artificial single and double curvature canals in 5% sodium hypochlorite (NaOCl) at body temperature (37 °C). PTG and PTU files (size F1) were subjected to fatigue tests in two different artificial ceramic canals. The single curvature model had a 60° curvature angle with a 5 mm radius. The double curvature model had a 60° curvature angle with a 5 mm radius and a second 30° curvature with a 2 mm radius. A file segment was introduced into the artificial canal and immersed in water or 5% NaOCl at 37 °C. The total number of cycles to fracture (NCF) was recorded. Data were analyzed using t-test and linear regression analysis. The NCF of all files was significantly influenced by the type of NiTi metal alloy (P < .01), canal curvatures (P < .01), and the environmental conditions (P < .05). PTG had higher fatigue resistance than PTU files in both single and double curvature canals (P < .05). The NCF of PTU files in 5% NaOCl was shorter than that in water (P < .05). The mean length of broken PTG was significantly shorter than those of PTU files in both single and double curvature canals (P < .01). The fatigue performance of PTG is better than that of PTU in both single and double curvature. Environmental conditions may affect the fatigue behavior of PTU files with single curvature.
  • 机译 人间充质干细胞的形态,迁移和分化在微米和纳米纹理的钛
    摘要:Orthopedic implants rely on facilitating a robust interaction between the implant material surface and the surrounding bone tissue. Ideally, the interface will encourage osseointegration with the host bone, resulting in strong fixation and implant stability. However, implant failure can occur due to the lack of integration with bone tissue or bacterial infection. The chosen material and surface topography of orthopedic implants are key factors that influence the early events following implantation and may ultimately define the success of a device. Early attachment, rapid migration and improved differentiation of stem cells to osteoblasts are necessary to populate the surface of biomedical implants, potentially preventing biofilm formation and implant-associated infection. This article explores these early stem cell specific events by seeding human mesenchymal stem cells (MSCs) on four clinically relevant materials: polyether ether ketone (PEEK), Ti6Al4V (smooth Ti), macro-micro rough Ti6Al4V (Endoskeleton®), and macro-micro-nano rough Ti6Al4V (nanoLOCK®). The results demonstrate the incorporation of a hierarchical macro-micro-nano roughness on titanium produces a stellate morphology typical of mature osteoblasts/osteocytes, rapid and random migration, and improved osteogenic differentiation in seeded MSCs. Literature suggests rapid coverage of a surface by stem cells coupled with stimulation of bone differentiation minimizes the opportunity for biofilm formation while increasing the rate of device integration with the surrounding bone tissue.
  • 机译 富血小板血浆处理的丝素蛋白基混合支架的3D打印用于骨组织工程
    摘要:3D printing/bioprinting are promising techniques to fabricate scaffolds with well controlled and patient-specific structures and architectures for bone tissue engineering. In this study, we developed a composite bioink consisting of silk fibroin (SF), gelatin (GEL), hyaluronic acid (HA), and tricalcium phosphate (TCP) and 3D bioprinted the silk fibroin-based hybrid scaffolds. The 3D bioprinted scaffolds with dual crosslinking were further treated with human platelet-rich plasma (PRP) to generate PRP coated scaffolds. Live/Dead and MTT assays demonstrated that PRP treatment could obviously promote the cell growth and proliferation of human adipose derived mesenchymal stem cells (HADMSC). In addition, the treatment of PRP did not significantly affect alkaline phosphatase (ALP) activity and expression, but significantly upregulated the gene expression levels of late osteogenic markers. This study demonstrated that the 3D printing of silk fibroin-based hybrid scaffolds, in combination with PRP post-treatment, might be a more efficient strategy to promote osteogenic differentiation of adult stem cells and has significant potential to be used for bone tissue engineering.
  • 机译 用于生物医学应用的金属植入物上的生物活性玻璃涂层
    摘要:Metallic implant materials possess adequate mechanical properties such as strength, elastic modulus, and ductility for long term support and stability in vivo. Traditional metallic biomaterials, including stainless steels, cobalt-chromium alloys, and titanium and its alloys, have been the gold standards for load-bearing implant materials in hard tissue applications in the past decades. Biodegradable metals including iron, magnesium, and zinc have also emerged as novel biodegradable implant materials with different in vivo degradation rates. However, they do not possess good bioactivity and other biological functions. Bioactive glasses have been widely used as coating materials on the metallic implants to improve their integration with the host tissue and overall biological performances. The present review provides a detailed overview of the benefits and issues of metal alloys when used as biomedical implants and how they are improved by bioactive glass-based coatings for biomedical applications.
  • 机译 “ DOX / IL-2 /IFN-γ共载热敏多肽水凝胶可有效治疗黑色素瘤”的勘误[Bioact。母校3(2018)118–128]
    摘要:
  • 机译 涂有明胶的生物活性玻璃基脚手架,用于持续释放叶黄素
    摘要:Gelatin-coated, 3D sponge-like scaffolds based on 45S5 bioactive glass were produced using the foam replication technique. Compressive strength tests of gelatin-coated samples compared to uncoated scaffolds showed significant strengthening and toughening effects of the gelatin coating with compressive strength values in the range of cortical bone. Additionally, the crosslinked gelatin network (using either caffeic acid or N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)/N-hxdroxysuccinimide (NHS) as crosslinking agent) was shown to be a suitable candidate for the sustained release of the bioactive molecule icariin. Concerning bioactivity of the produced scaffolds, characterization by FTIR and SEM indicated the formation of hydroxyapatite (HA) in all samples after immersion in simulated body fluid (SBF) for 14 days, highlighting the favorable combination of mechanical robustness, bioactivity and drug delivery capability of this new type of scaffolds.
  • 机译 变形孪生对可生物降解的锌镁合金力学性能的影响
    摘要:To satisfy the property requirements for biodegradable medical implants, Zn alloyed with low levels of Mg (≤0.8 wt%) has attracted increased research interest. In the present study, deformation twinning was observed in tensile tests and twinning appears to have an adverse impact on ductility. The profuse twinning in the as-cast Zn-Mg alloys accelerated crack growth in tension due to twinning impingement which caused local stress concentrations and initiates cracking. As-rolled Zn-Mg alloys have better ductility than their as-cast counterparts due to the inhibition of twinning by the refined Mg2Zn11 intermetallic phase and the finer grain size.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号