您现在的位置:首页>美国卫生研究院文献>American Journal of Physiology - Lung Cellular and Molecular Physiology

期刊信息

  • 期刊名称:

    -

  • 刊频: Twice monthly, 2012-
  • NLM标题: Am J Physiol Lung Cell Mol Physiol
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<1/4>
63条结果
  • 机译 缩回
    • 作者:
    • 刊名:American Journal of Physiology - Lung Cellular and Molecular Physiology
    • 2015年第8期
    摘要:
  • 机译 肺再生过程中支气管肺泡干细胞反应的细胞动力学和建模
    摘要:Organ regeneration in mammals is hypothesized to require a functional pool of stem or progenitor cells, but the role of these cells in lung regeneration is unknown. Whereas postnatal regeneration of alveolar tissue has been attributed to type II alveolar epithelial cells (AECII), we reasoned that bronchioalveolar stem cells (BASCs) have the potential to contribute substantially to this process. To test this hypothesis, unilateral pneumonectomy (PNX) was performed on adult female C57/BL6 mice to stimulate compensatory lung regrowth. The density of BASCs and AECII, and morphometric and physiologic measurements were recorded on days 1, 3, 7, 14, 28, and 45 days after surgery. Vital capacity was restored by day 7 after PNX. BASC numbers increased by day 3, peaked to 220% of controls (P<0.05) by day 14, then returned to baseline after active lung regrowth was complete, whereas AECII cell densities increased to 124% of baseline (N/S). Proliferation studies revealed significant BrdU uptake in BASCs and AECII within the first 7 days after PNX. Quantitative analysis using a systems biology model was used to evaluate the potential contribution of BASCs and AECII. The model demonstrated that BASC proliferation and differentiation contributes between 0 and 25% of compensatory alveolar epithelial (type I and II cell) regrowth, demonstrating that regeneration requires a substantial contribution from AECII. The observed cell kinetic profiles can be reconciled using a dual-compartment (BASC and AECII) proliferation model assuming a linear hierarchy of BASCs, AECII and AECI cells to achieve lung regrowth.
  • 机译 Toll样受体2在气道上皮细胞中以IL-6依赖性方式被猪圈闭粉尘上调
    摘要:Hog confinement workers are at high risk to develop chronic bronchitis as a result of their exposure to organic dust. Chronic bronchitis is characterized by inflammatory changes of the airway epithelium. A key mediator in inflammation is Toll-like receptor 2 (TLR2). We investigated the role of TLR2 in pulmonary inflammation induced by hog confinement dust. Normal Human Bronchial Epithelial Cells (NHBE) were grown in culture and exposed to hog confinement dust extract. Hog confinement dust upregulated airway epithelial cell TLR2 mRNA in a concentration and time-dependent manner using real-time PCR. There was a similar increase in TLR2 protein at 48 hours as shown by Western blot. TLR2 was upregulated on the surface of airway epithelial cells as shown by flow cytometry. A similar upregulation of pulmonary TLR2 mRNA and protein was shown in a murine model of hog confinement dust exposure. Hog confinement dust is known to stimulate epithelial cells to produce IL-6. In order to determine whether TLR2 expression was being regulated by IL-6, the production of IL-6 was blocked using an IL-6 neutralizing antibody. This resulted in attenuation of the dust-induced upregulation of TLR2. To further demonstrate the importance of IL-6 in the regulation of TLR2, NHBE were directly stimulated with recombinant human IL-6. IL-6 alone was able to upregulate TLR2 in airway epithelial cells. Hog confinement dust upregulates TLR2 in the airway epithelium through an IL-6 dependent mechanism.
  • 机译 脂联素缺乏小鼠的肺泡巨噬细胞活化和肺气肿样表型
    摘要:Adiponectin is an adipocyte-derived collectin that acts on a wide range of tissues including liver, brain, heart, and vascular endothelium. To date, little is known about the actions of adiponectin in the lung. Herein, we demonstrate that adiponectin is present in lung lining fluid and that adiponectin deficiency leads to increases in proinflammatory mediators and an emphysema-like phenotype in the mouse lung. Alveolar macrophages from adiponectin-deficient mice spontaneously display increased production of tumor necrosis factor-α (TNF-α) and matrix metalloproteinase (MMP-12) activity. Consistent with these observations, we found that pretreatment of alveolar macrophages with adiponectin leads to TNF-α and MMP-12 suppression. Together, our findings show that adiponectin leads to macrophage suppression in the lung and suggest that adiponectin-deficient states may contribute to the pathogenesis of inflammatory lung conditions such as emphysema.
  • 机译 一氧化氮合酶同工型对肺氧中毒的作用,局部作用与介导作用
    摘要:Reactive species of oxygen and nitrogen have been collectively implicated in pulmonary oxygen toxicity, but the contributions of specific molecules are unknown. Therefore, we assessed the roles of several reactive species, particularly nitric oxide, in pulmonary injury by exposing wild-type mice and seven groups of genetically altered mice to >98% O2 at 1, 3, or 4 atmospheres absolute. Genetically altered animals included knockouts lacking either neuronal nitric oxide synthase (nNOS−/−), endothelial nitric oxide synthase (eNOS−/−), inducible nitric oxide synthase (iNOS−/−), extracellular superoxide dismutase (SOD3−/−), or glutathione peroxidase 1 (GPx1−/−), as well as two transgenic variants (S1179A and S1179D) having altered eNOS activities. We confirmed our earlier finding that normobaric hyperoxia (NBO2) and hyperbaric hyperoxia (HBO2) result in at least two distinct but overlapping patterns of pulmonary injury. Our new findings are that the role of nitric oxide in the pulmonary pathophysiology of hyperoxia depends both on the specific NOS isozyme that is its source and on the level of hyperoxia. Thus, iNOS predominates in the etiology of lung injury in NBO2, and SOD3 provides an important defense. But in HBO2, nNOS is a major contributor to pulmonary injury, whereas eNOS is protective. In addition, we demonstrated that nitric oxide derived from nNOS is involved in a neurogenic mechanism of HBO2-induced lung injury that is linked to central nervous system oxygen toxicity through adrenergic/cholinergic pathways.
  • 机译 JNK在人肺微血管内皮细胞网络形成中的作用
    摘要:The signaling mechanisms in vasculogenesis and/or angiogenesis remain poorly understood, limiting the ability to regulate growth of new blood vessels in vitro and in vivo. Cultured human lung microvascular endothelial cells align into tubular networks in the three-dimensional matrix, Matrigel. Overexpression of MAPK phosphatase-1 (MKP-1), an enzyme that inactivates the ERK, JNK, and p38 pathways, inhibited network formation of these cells. Adenoviral-mediated overexpression of recombinant MKP-3 (a dual specificity phosphatase that specifically inactivates the ERK pathway) and dominant negative or constitutively active MEK did not attenuate network formation in Matrigel compared with negative controls. This result suggested that the ERK pathway may not be essential for tube assembly, a conclusion which was supported by the action of specific MEK inhibitor PD 184352, which also did not alter network formation. Inhibition of the JNK pathway using SP-600125 or L-stereoisomer (L-JNKI-1) blocked network formation, whereas the p38 MAPK blocker SB-203580 slightly enhanced it. Inhibition of JNK also attenuated the number of small vessel branches in the developing chick chorioallantoic membrane. Our results demonstrate a specific role for the JNK pathway in network formation of human lung endothelial cells in vitro while confirming that it is essential for the formation of new vessels in vivo.
  • 机译 肝细胞生长因子通过β-catenin,Akt和p42 / p44 MAPK调节人支气管上皮细胞中环氧合酶2的表达
    摘要:Hepatocyte growth factor (HGF) is upregulated in response to lung injury and has been implicated in tissue repair through its antiapoptotic and proliferative activities. Cyclooxygenase-2 (COX-2) is an inducible enzyme in the biosynthetic pathway of prostaglandins, and its activation has been shown to play a role in cell growth. Here, we report that HGF induces gene transcription of COX-2 in human bronchial epithelial cells (HBEpC). Treatment of HBEpC with HGF resulted in phosphorylation of the HGF receptor (c-Met), activation of Akt, and upregulation of COX-2 mRNA. Adenovirus-mediated gene transfer of a dominant negative (DN) Akt mutant revealed that HGF increased COX-2 mRNA in an Akt-dependent manner. COX-2 promoter analysis in luciferase reporter constructs showed that HGF regulation required the β-catenin-responsive T cell factor-4 binding element (TBE). The HGF activation of the COX-2 gene transcription was blocked by DN mutant of β-catenin or by inhibitors that blocked activation of Akt. Inhibition of p42/p44 MAPK pathway blocked HGF-mediated activation of β-catenin gene transcription but not Akt activation, suggesting that p42/p44 MAPK acts in a parallel mechanism for β-catenin activation. We also found that inhibition of COX-2 with NS-398 blocked HGF-induced growth in HBEpC. Together, the results show that the HGF increases COX-2 gene expression via an Akt-, MAPK-, and β-catenin-dependent pathway in HBEpC.
  • 机译 神经激肽受体亚型在人气道平滑肌细胞中的表达及与肌醇磷酸和钙信号通路的耦合
    摘要:Neuropeptide tachykinins (substance P, neurokinin A, and neurokinin B) are present in peripheral terminals of sensory nerve fibers within the respiratory tract and cause airway contractile responses and hyperresponsiveness in humans and most mammalian species. Three subtypes of neurokinin receptors (NK1R, NK2R, and NK3R) classically couple to Gq protein-mediated inositol 1,4,5-trisphosphate (IP3) synthesis and liberation of intracellular Ca2+, which initiates contraction, but their expression and calcium signaling mechanisms are incompletely understood in airway smooth muscle. All three subtypes were identified in native and cultured human airway smooth muscle (HASM) and were subsequently overexpressed in HASM cells using a human immunodeficiency virus-1-based lentivirus transduction system. Specific NKR agonists {NK1R, [Sar9,Met(O2)11]-substance P; NK2R, [β-Ala8]-neurokinin A(4–10); NK3R, senktide} stimulated inositol phosphate synthesis and increased intracellular Ca2+ concentration ([Ca2+]i) in native HASM cells and in HASM cells transfected with each NKR subtype. These effects were blocked by NKR-selective antagonists (NK1R, L-732138; NK2R, GR-159897; NK3R, SB-222200). The initial transient and sustained phases of increased [Ca2+]i were predominantly inhibited by the IP3 receptor antagonist 2-aminoethoxydiphenyl borate (2-APB) or the store-operated Ca2+ channel antagonist SKF-96365, respectively. These results show that all three subtypes of NKRs are expressed in native HASM cells and that IP3 levels are the primary mediators of NKR-stimulated initial [Ca2+]i increases, whereas store-operated Ca2+ channels mediate the sustained phase of the [Ca2+]i increase.
  • 机译 β2-肾上腺素受体3'UTR的可变长度poly-C道多态性改变表达和激动剂调控。
    摘要:β2-adrenergic receptors (β2AR) expressed on airway epithelial and smooth muscle cells regulate mucociliary clearance and relaxation, and are the targets for β-agonists in the treatment of obstructive lung disease. However, the clinical responses display extensive interindividual variability, which is not adequately explained by genetic variability in the 5′-flanking or coding region of the intronless β2AR gene. The nonsynonymous coding polymorphism most often associated with a bronchodilator phenotype (Arg16) is found within three haplotypes that differ by the number of C’s (11, 12 or 13) within a 3′UTR poly-C tract. To examine potential effects of this variability on receptor expression, BEAS-2B cells were transfected with constructs containing the β2AR (Arg16) coding sequence followed by its 3′UTR with the various polymorphic poly-C tracts. β2Arg16-11C had 25% lower mRNA expression and 33% lower β2AR protein expression compared to the other two haplotypes. Consistent with this lower steady-state expression, β2Arg16-11C mRNA displayed more rapid and extensive degradation after actinomycin D treatment compared to β2Arg16-12C and 13C. However, β2Arg16-12C underwent 50% less downregulation of receptor expression during β-agonist exposure compared to the other two haplotypes. Thus, these haplotypes direct a potential low-response phenotype due to decreased steady-state receptor expression combined with wild-type agonist-promoted downregulation (β2Arg16-11C), and, a high-response phenotype due to increased baseline expression combined with decreased agonist-promoted downregulation (β2Arg16-12C). This heterogeneity may contribute to the variability of clinical responses to β-agonist, and genotyping to identify these 3′UTR polymorphisms may improve predictive power within the context of β2AR haplotypes in pharmacogenetic studies.
  • 机译 小型热休克相关蛋白HSP20是一种cAMP依赖性蛋白激酶底物,参与气道平滑肌松弛
    摘要:Activation of the cAMP/cAMP-dependent PKA pathway leads to relaxation of airway smooth muscle (ASM). The purpose of this study was to examine the role of the small heat shock-related protein HSP20 in mediating PKA-dependent ASM relaxation. Human ASM cells were engineered to constitutively express a green fluorescent protein-PKA inhibitory fusion protein (PKI-GFP) or GFP alone. Activation of the cAMP-dependent signaling pathways by isoproterenol (ISO) or forskolin led to increases in the phosphorylation of HSP20 in GFP but not PKI-GFP cells. Forskolin treatment in GFP but not PKI-GFP cells led to a loss of central actin stress fibers and decreases in the number of focal adhesion complexes. This loss of stress fibers was associated with dephosphorylation of the actin-depolymerizing protein cofilin in GFP but not PKI-GFP cells. To confirm that phosphorylated HSP20 plays a role in PKA-induced ASM relaxation, intact strips of bovine ASM were precontracted with serotonin followed by ISO. Activation of the PKA pathway led to relaxation of bovine ASM, which was associated with phosphorylation of HSP20 and dephosphorylation of cofilin. Finally, treatment with phosphopeptide mimetics of HSP20 possessing a protein transduction domain partially relaxed precontracted bovine ASM strips. In summary, ISO-induced phosphorylation of HSP20 or synthetic phosphopeptide analogs of HSP20 decreases phosphorylation of cofilin and disrupts actin in ASM, suggesting that one possible mechanism by which HSP20 mediates ASM relaxation is via regulation of actin filament dynamics.
  • 机译 臭氧暴露对人类表面活性蛋白A(SP-A)和SP-A变异体吞噬活性的影响
    摘要:Surfactant protein A (SP-A) enhances phagocytosis of Pseudomonas aeruginosa. SP-A1 and SP-A2 encode human (h) SP-A; SP-A2 products enhance phagocytosis more than SP-A1. Oxidation can affect SP-A function. We hypothesized that in vivo and in vitro ozone-induced oxidation of SP-A (as assessed by its carbonylation level) negatively affects its function in phagocytosis (as assessed by bacteria cell association). To test this, we used P. aeruginosa, rat alveolar macrophages (AMs), hSP-As with varying levels of in vivo (natural) oxidation, and ozone-exposed SP-A2 (1A, 1A0) and SP-A1 (6A2, 6A4) variants. SP-A oxidation levels (carbonylation) were measured; AMs were incubated with bacteria in the presence of SP-A, and the phagocytic index was calculated. We found: 1) the phagocytic activity of hSP-A is reduced with increasing levels of in vivo SP-A carbonylation; 2) in vitro ozone exposure of hSP-A decreases its function in a dose-dependent manner as well as its ability to enhance phagocytosis of either gram-negative or gram-positive bacteria; 3) the activity of both SP-A1 and SP-A2 decreases in response to in vitro ozone exposure of proteins with SP-A2 being affected more than SP-A1. We conclude that both in vivo and in vitro oxidative modifications of SP-A by carbonylation reduce its ability to enhance phagocytosis of bacteria and that the activity of SP-A2 is affected more by in vitro ozone-induced oxidation. We speculate that functional differences between SP-A1 and SP-A2 exist in vivo and that the redox status of the lung microenvironment differentially affects function of SP-A1 and SP-A2.
  • 机译 蛋白酶体抑制改善充血性心力衰竭大鼠的diaphragm肌功能
    摘要:In congestive heart failure (CHF), diaphragm weakness is known to occur and is associated with myosin loss and activation of the ubiquitin-proteasome pathway. The effect of modulating proteasome activity on myosin loss and diaphragm function is unknown. The present study investigated the effect of in vivo proteasome inhibition on myosin loss and diaphragm function in CHF rats. Coronary artery ligation was used as an animal model for CHF. Sham-operated rats served as controls. Animals were treated with the proteasome inhibitor bortezomib (intravenously) or received saline (0.9%) injections. Force generating capacity, cross-bridge cycling kinetics, and myosin content were measured in diaphragm single fibers. Proteasome activity, caspase-3 activity, and MuRF-1 and MAFbx mRNA levels were determined in diaphragm homogenates. Proteasome activities in the diaphragm were significantly reduced by bortezomib. Bortezomib treatment significantly improved diaphragm single fiber force generating capacity (~30–40%) and cross-bridge cycling kinetics (~20%) in CHF. Myosin content was ~30% higher in diaphragm fibers from bortezomib-treated CHF rats than saline. Caspase-3 activity was decreased in diaphragm homogenates from bortezomib-treated rats. CHF increased MuRF-1 and MAFbx mRNA expression in the diaphragm, and bortezomib treatment diminished this rise. The present study demonstrates that treatment with a clinically used proteasome inhibitor improves diaphragm function by restoring myosin content in CHF.
  • 机译 GABAA受体在气道平滑肌中表达并促进松弛
    摘要:γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system and exerts its actions via both ionotropic (GABAA) channels and metabotropic (GABAB) receptors. GABAA channels are ubiquitously expressed in neuronal tissues, and in mature neurons modulate an inward chloride current resulting in neuronal inhibition due to membrane hyperpolarization. In airway smooth muscle (ASM) cells, membrane hyperpolarization favors smooth muscle relaxation. Although GABAA channels and GABAB receptors have been functionally identified on peripheral nerves in the lung, GABAA channels have never been identified on ASM itself. We detected the mRNA encoding of the GABAA α4-, α5-, β3-, δ-, γ1–3-, π-, and θ-subunits in total RNA isolated from native human and guinea pig ASM and from cultured human ASM cells. Selected immunoblots identified the GABAA α4-, α5-, β3-, and γ2-subunit proteins in native human and guinea pig ASM and cultured human ASM cells. The GABAA β3-subunit protein was immunohistochemically localized to ASM in guinea pig tracheal rings. While muscimol, a specific GABAA channel agonist, did not affect the magnitude or the time to peak contractile effect of substance P, it directly concentration dependently relaxed a tachykinin-induced contraction in guinea pig tracheal rings, which was inhibited by the GABAA-selective antagonist gabazine. Muscimol also relaxed a contraction induced by an alternative contractile agonist histamine. These results demonstrate that functional GABAA channels are expressed on ASM and suggest a novel therapeutic target for the relaxation of ASM in diseases such as asthma and chronic obstructive lung disease.
  • 机译 吡咯烷二硫代氨基甲酸酯可恢复内皮细胞膜完整性,并减轻一克他可林所致的肺动脉高压
    摘要:Monocrotaline (MCT)-induced pulmonary artery hypertension (PAH) in rats is preceded by an inflammatory response, progressive endothelial cell membrane disruption, reduction in the expression of caveolin-1 and reciprocal activation of STAT3 (PY-STAT3). Superoxide and NF-κB have been implicated in PAH. To evaluate the role of caveolin-1, PY-STAT3 activation and superoxide in PAH, MCT-injected rats were treated daily with pyrrolidine dithiocarbamate (PDTC, starting on day 1, 3 and 14 × 2 wks) an inhibitor of inflammation and NF-κB activation. Hemodynamic data, the expression of inhibitory (I)-κBα, caveolin-1 and Tie2 (a membrane protein), activation of PY-STAT3 and NF-κB, and superoxide chemiluminescence were examined. Rats developed progressive PAH at 2 wks post-MCT. There were progressive reduction in the expression of caveolin-1, Tie2 and activation of PY-STAT3 in the lungs. Reduction in I-κBα expression was present at 2 and 4 wks post-MCT. Superoxide chemiluminescence and NF-κB activation were observed only at 2 wks post-MCT and both decreased by 4 wks post-MCT despite progressive PAH. PDTC (starting on day 1 and 3) rescued caveolin-1 and Tie2, reversed MCT-induced PY-STAT3 activation, and attenuated PAH. In addition, PDTC restored I-κBα expression and reduced superoxide chemiluminescence at 2 wks, but did not inhibit NF-κB activation despite attenuation of PAH. PDTC had no effect on established PAH. Increased superoxide chemiluminescence and NF-κB activation appear to be a transient phenomenon in the MCT model. Thus, the disruption of endothelial cell membrane integrity resulting in cav-1 loss and reciprocal activation of PY-STAT3 plays a key role in the MCT-induced PAH.
  • 机译 肺泡内组织因子途径抑制剂不足以阻止组织因子促凝活性
    摘要:The alveolar compartment in acute lung injury contains high levels of tissue factor (TF) procoagulant activity favoring fibrin deposition. We previously reported that the alveolar epithelium can release TF procoagulant activity in response to a proinflammatory stimulus. To test the hypothesis that the alveolar epithelium further modulates intra-alveolar fibrin deposition through secretion of an endogenous inhibitor to TF, tissue factor pathway inhibitor (TFPI), we measured TFPI levels in edema fluid (EF) from patients with acute respiratory distress syndrome. To determine whether the alveolar epithelium can release TFPI, both full-length TFPI and truncated TFPI were measured (ELISA) in pulmonary edema fluid from patients with acute respiratory distress syndrome (ARDS) and a control group of patients with hydrostatic pulmonary edema (HYDRO). TFPI protein was also measured in conditioned media (CM) and cell lysates (CL) from human alveolar epithelial cells (A549) after exposure to cytomix (TNF-α, IL-1β, IFN-γ). TFPI protein levels were higher in pulmonary edema fluid from patients with ARDS vs. HYDRO. TFPI protein was increased in CM and did not change in CL after cytomix treatment; TFPI mRNA levels (RT-PCR) did not change. Despite the high levels of TFPI, both the EF and CM retained significant TF procoagulant activity as measured by plasma recalcification time. The majority of intraalveolar TFPI was in a truncated, inactive form, whereas the majority of TFPI released from cells was full length, suggesting different mechanisms of inactivation. In summary, the alveolar epithelium releases TFPI in response to an inflammatory stimulus but does not increase TFPI gene transcription or protein production. Levels of intra-alveolar TFPI in ARDS are not sufficient to block intra-alveolar TF procoagulant activity due to truncation and inactivation of intra-alveolar TFPI.
  • 机译 前列腺素的表达受气道表面液量的调节,并在囊性纤维化中增加
    摘要:Airway surface liquid (ASL) absorption is initiated by Na+ entry via epithelial Na+ channels (ENaC), which establishes an osmotic gradient that drives fluid from the luminal to serosal airway surface. We and others have recently reported that a protease/anti-protease balance regulates ENaC in human airway epithelial cells (HAEC) and provides a mechanism for autoregulation of ASL volume. In cystic fibrosis (CF), this balance is disturbed, leading to constitutive proteolytic activation of ENaC and the pathological Na+ hyperabsorption characteristic of this airway disease. Prostasin is a glycosylphosphatidylinositol-anchored serine protease that activates ENaC and is expressed on the surface epithelium lining the airway. In this report we present evidence that prostasin expression is regulated by the ASL volume, allowing for increased proteolytic activation of ENaC when the ASL volume is high. Prostasin activity is further regulated by the cognate serpin protease nexin-1 (PN-1), which is expressed in HAEC and inhibits Na+ absorption by forming an inactive complex with prostasin and preventing the proteolytic processing of prostasin. Whereas these mechanisms regulate prostasin expression in response to ASL volume in non-CF epithelia, HAEC cultured from CF patients express >50% more prostasin on the epithelial surface. These findings suggest that a proteolytic cascade involving prostasin, an upstream prostasin-activating protease, and PN-1 regulate Na+ absorption in the airway and that abnormal prostasin expression contributes to excessive proteolytic activation of ENaC in CF patients.
  • 机译 20-HETE增加肺动脉内皮细胞中超氧化物的产生并激活NADPH氧化酶
    摘要:Reactive oxygen species (ROS) signal vital physiological processes including cell growth, angiogenesis, contraction, and relaxation of vascular smooth muscle. Because cytochrome P-450 family 4 (CYP4)/20-hydroxyeicosatetraenoic acid (20-HETE) has been reported to enhance angiogenesis, pulmonary vascular tone, and endothelial nitric oxide synthase function, we explored the potential of this system to stimulate bovine pulmonary artery endothelial cell (BPAEC) ROS production. Our data are the first to demonstrate that 20-HETE increases ROS in BPAECs in a time- and concentration-dependent manner as detected by enhanced fluorescence of oxidation products of dihydroethidium (DHE) and dichlorofluorescein diacetate. An analog of 20-HETE elicits no increase in ROS and blocks 20-HETE-evoked increments in DHE fluorescence, supporting its function as an antagonist. Endothelial cells derived from bovine aortas exhibit enhanced ROS production to 20-HETE quantitatively similar to that of BPAECs. 20-HETE-induced ROS production in BPAECs is blunted by pretreatment with polyethylene-glycolated SOD, apocynin, inhibition of Rac1, and a peptide-based inhibitor of NADPH oxidase subunit p47phox association with gp91. These data support 20-HETE-stimulated, NADPH oxidase-derived, and Rac1/2-dependent ROS production in BPAECs. 20-HETE promotes translocation of p47phox and tyrosine phosphorylation of p47phox in a time-dependent manner as well as increased activated Rac1/2, providing at least three mechanisms through which 20-HETE activates NADPH oxidase. These observations suggest that 20-HETE stimulates ROS production in BPAECs at least in part through activation of NADPH oxidase within minutes of application of the lipid.
  • 机译 PPAR-γ激动剂抑制人肺成纤维细胞和博莱霉素诱导的肺纤维化的纤维化表型
    摘要:Pulmonary fibrosis is characterized by alterations in fibroblast phenotypes resulting in excessive extracellular matrix accumulation and anatomic remodeling. Current therapies for this condition are largely ineffective. Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a member of the nuclear hormone receptor superfamily, the activation of which produces a number of biological effects, including alterations in metabolic and inflammatory responses. The role of PPAR-γ as a potential therapeutic target for fibrotic lung diseases remains undefined. In the present study, we show expression of PPAR-γ in fibroblasts obtained from normal human lungs and lungs of patients with idiopathic interstitial pneumonias. Treatment of lung fibroblasts and myofibroblasts with PPAR-γ agonists results in inhibition of proliferative responses and induces cell cycle arrest. In addition, PPAR-γ agonists, including a constitutively active PPAR-γ construct (VP16-PPAR-γ), inhibit the ability of transforming growth factor-β1 to induce myofibroblast differentiation and collagen secretion. PPAR-γ agonists also inhibit fibrosis in a murine model, even when administration is delayed until after the initial inflammation has largely resolved. These observations indicate that PPAR-γ is an important regulator of fibroblast/myofibroblast activation and suggest a role for PPAR-γ ligands as novel therapeutic agents for fibrotic lung diseases.
  • 机译 沉默TREM-1对巨噬细胞中TLR4信号传导的功能基因组学
    摘要:Triggering receptor expressed on myeloid cells 1 (TREM-1) is a recently discovered molecule that is expressed on the cell surface of monocytes and neutrophils. Engagement of TREM-1 triggers synthesis of proinflammatory cytokines in response to microbes, but the extent and mechanism by which TREM-1 modulates the inflammatory response is poorly defined. In the present study, we investigated the functional effects of blocking TREM-1 on the Toll-like receptor (TLR)4-mediated signaling pathway in macrophages. By transfecting cells with small hairpin interfering RNA molecules to TREM-1 (shRNA), we confirmed that TREM-1 mRNA and protein expression was greatly attenuated in RAW cells in response to treatment with LPS. PCR array for genes related to or activated by the TLR pathway revealed that although the expression of TLR4 itself was not significantly altered by silencing of TREM-1, expression of several genes, including MyD88, CD14, IκBα, IL-1β, MCP-1, and IL-10 was significantly attenuated in the TREM-1 knockdown cells in response to treatment with LPS. These data indicate that expression of TREM-1 modulates the TLR signaling in macrophages by altering the expression of both adaptor and effector proteins that are critical to the endotoxin response.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号