首页> 美国卫生研究院文献>Acta Crystallographica Section D: Biological Crystallography >Structure of the bifunctional aminoglycoside-resistance enzyme AAC(6′)-Ie-APH(2′′)-Ia revealed by crystallographic and small-angle X-ray scattering analysis
【2h】

Structure of the bifunctional aminoglycoside-resistance enzyme AAC(6′)-Ie-APH(2′′)-Ia revealed by crystallographic and small-angle X-ray scattering analysis

机译:晶体学和小角X射线散射分析揭示双功能氨基糖苷抗性酶AAC(6)-Ie-APH(2)-Ia的结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Broad-spectrum resistance to aminoglycoside antibiotics in clinically important Gram-positive staphylococcal and entero­coccal pathogens is primarily conferred by the bifunctional enzyme AAC(6′)-Ie-APH(2′′)-Ia. This enzyme possesses an N-terminal coenzyme A-dependent acetyltransferase domain [AAC(6′)-Ie] and a C-terminal GTP-dependent phosphotransferase domain [APH(2′′)-Ia], and together they produce resistance to almost all known aminoglycosides in clinical use. Despite considerable effort over the last two or more decades, structural details of AAC(6′)-Ie-APH(2′′)-Ia have remained elusive. In a recent breakthrough, the structure of the isolated C-terminal APH(2′′)-Ia enzyme was determined as the binary Mg2GDP complex. Here, the high-resolution structure of the N-terminal AAC(6′)-Ie enzyme is reported as a ternary kanamycin/coenzyme A abortive complex. The structure of the full-length bifunctional enzyme has subsequently been elucidated based upon small-angle X-ray scattering data using the two crystallographic models. The AAC(6′)-Ie enzyme is joined to APH(2′′)-Ia by a short, predominantly rigid linker at the N-terminal end of a long α-helix. This α-helix is in turn intrinsically associated with the N-terminus of APH(2′′)-Ia. This structural arrangement supports earlier observations that the presence of the intact α-helix is essential to the activity of both functionalities of the full-length AAC(6′)-Ie-APH(2′′)-Ia enzyme.
机译:临床上重要的革兰氏阳性葡萄球菌和肠球菌病原体对氨基糖苷类抗生素的广谱耐药性主要是由双功能酶AAC(6')-Ie-APH(2'')-Ia赋予的。该酶具有N端辅酶A依赖性乙酰转移酶结构域[AAC(6')-Ie]和C端GTP依赖性磷酸转移酶结构域[APH(2'')-Ia],它们共同产生对临床上所有已知的氨基糖苷。尽管在过去的两个或更多个十年中付出了巨大的努力,但AAC(6')-Ie-APH(2'')-Ia的结构细节仍然难以捉摸。在最近的突破中,分离出的C末端APH(2'')-Ia酶的结构被确定为二元Mg2GDP复合物。在此,N末端AAC(6')-Ie酶的高分辨率结构被报告为三价卡那霉素/辅酶A流产复合物。随后使用两个晶体学模型基于小角度X射线散射数据阐明了全长双功能酶的结构。 AAC(6')-Ie酶通过长α-螺旋N端的短而主要是刚性的接头与APH(2'')-Ia连接。该α-螺旋又本质上与APH(2'')-Ia的N-末端相关。这种结构安排支持更早的观察,即完整的α-螺旋的存在对于全长AAC(6')-Ie-APH(2'')-Ia酶的两个功能的活性至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号