您现在的位置:首页>美国卫生研究院文献>Acta Crystallographica Section D: Biological Crystallography

期刊信息

  • 期刊名称:

    -

  • 刊频:
  • NLM标题: Acta Crystallogr D Biol Crystallogr
  • iso缩写: -
  • ISSN: -
  • 排序:
  • 显示:
  • 每页:
全选(0
<1/20>
782条结果
  • 机译 天然硫/氯SAD定相用于连续飞秒晶体学
    摘要:Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures.
  • 机译 X射线诱导的多铜氧化酶催化活性位点还原:质子继电器机制和O 2还原状态的结构见解
    摘要:During X-ray data collection from a multicopper oxidase (MCO) crystal, electrons and protons are mainly released into the system by the radiolysis of water molecules, leading to the X-ray-induced reduction of O2 to 2H2O at the trinuclear copper cluster (TNC) of the enzyme. In this work, 12 crystallographic structures of Thermus thermophilus HB27 multicopper oxidase (Tth-MCO) in holo, apo and Hg-bound forms and with different X-ray absorbed doses have been determined. In holo Tth-MCO structures with four Cu atoms, the proton-donor residue Glu451 involved in O2 reduction was found in a double conformation: Glu451a (∼7 Å from the TNC) and Glu451b (∼4.5 Å from the TNC). A positive peak of electron density above 3.5σ in an F o − F c map for Glu451a O∊2 indicates the presence of a carboxyl functional group at the side chain, while its significant absence in Glu451b strongly suggests a carboxylate functional group. In contrast, for apo Tth-MCO and in Hg-bound structures neither the positive peak nor double conformations were observed. Together, these observations provide the first structural evidence for a proton-relay mechanism in the MCO family and also support previous studies indicating that Asp106 does not provide protons for this mechanism. In addition, eight composite structures (Tth-MCO-C1–8) with different X-ray-absorbed doses allowed the observation of different O2-reduction states, and a total depletion of T2Cu at doses higher than 0.2 MGy showed the high susceptibility of this Cu atom to radiation damage, highlighting the importance of taking radiation effects into account in biochemical interpretations of an MCO structure.
  • 机译 自组装DNA寡核苷酸中依赖序列的结构变化
    摘要:DNA has proved to be a remarkable molecule for the construction of sophisticated two-dimensional and three-dimensional architectures because of its programmability and structural predictability provided by complementary Watson–Crick base pairing. DNA oligonucleotides can, however, exhibit a great deal of local structural diversity. DNA conformation is strongly linked to both environmental conditions and the nucleobase identities inherent in the oligonucleotide sequence, but the exact relationship between sequence and local structure is not completely understood. This study examines how a single-nucleotide addition to a class of self-assembling DNA 13-mers leads to a significantly different overall structure under identical crystallization conditions. The DNA 13-mers self-assemble in the presence of Mg2+ through a combination of Watson–Crick and noncanonical base-pairing interactions. The crystal structures described here show that all of the predicted Watson–Crick base pairs are present, with the major difference being a significant rearrangement of noncanonical base pairs. This includes the formation of a sheared A–G base pair, a junction of strands formed from base-triple interactions, and tertiary interactions that generate structural features similar to tandem sheared G–A base pairs. The adoption of this alternate noncanonical structure is dependent in part on the sequence in the Watson–Crick duplex region. These results provide important new insights into the sequence–structure relationship of short DNA oligonucleotides and demonstrate a unique interplay between Watson–Crick and noncanonical base pairs that is responsible for crystallization fate.
  • 机译 小角度散射法测定嵌入磷脂纳米盘环境中的人类细胞色素P450的形状和位置
    摘要:Membrane proteins reconstituted into phospholipid nanodiscs comprise a soluble entity accessible to solution small-angle X-ray scattering (SAXS) studies. It is demonstrated that using SAXS data it is possible to determine both the shape and localization of the membrane protein cytochrome P450 3A4 (CYP3A4) while it is embedded in the phospholipid bilayer of a nanodisc. In order to accomplish this, a hybrid approach to analysis of small-angle scattering data was developed which combines an analytical approach to describe the multi-contrast nanodisc with a free-form bead-model description of the embedded protein. The protein shape is then reconstructed ab initio to optimally fit the data. The result of using this approach is compared with the result obtained using a rigid-body description of the CYP3A4-in-nanodisc system. Here, the CYP3A4 structure relies on detailed information from crystallographic and molecular-dynamics studies of CYP3A4. Both modelling approaches arrive at very similar solutions in which the α-helical anchor of the CYP3A4 systematically stays close to the edge of the nanodisc and with the large catalytic domain leaning over the outer edge of the nanodisc. The obtained distance between the globular domains of CYP3A4 is consistent with previously published theoretical calculations.
  • 机译 人IgG1与FcγRI相互作用的结构见解:聚糖在结合中无直接作用
    摘要:The three-dimensional structure of a human IgG1 Fc fragment bound to wild-type human FcγRI is reported. The structure of the corresponding complex was solved at a resolution of 2.4 Å using molecular replacement; this is the highest resolution achieved for an unmutated FcγRI molecule. This study highlights the critical structural and functional role played by the second extracellular subdomain of FcγRI. It also explains the long-known major energetic contribution of the Fc ‘LLGG’ motif at positions 234–237, and particularly of Leu235, via a ‘lock-and-key’ mechanism. Finally, a previously held belief is corrected and a differing view is offered on the recently proposed direct role of Fc carbohydrates in the corresponding interaction. Structural evidence is provided that such glycan-related effects are strictly indirect.
  • 机译 MeshAndCollect:用于同步加速器大分子晶体学束线的自动化多晶数据收集工作流程
    摘要:Here, an automated procedure is described to identify the positions of many cryocooled crystals mounted on the same sample holder, to rapidly predict and rank their relative diffraction strengths and to collect partial X-ray diffraction data sets from as many of the crystals as desired. Subsequent hierarchical cluster analysis then allows the best combination of partial data sets, optimizing the quality of the final data set obtained. The results of applying the method developed to various systems and scenarios including the compilation of a complete data set from tiny crystals of the membrane protein bacterio­rhodopsin and the collection of data sets for successful structure determination using the single-wavelength anomalous dispersion technique are also presented.
  • 机译 MATE转运蛋白的晶体学研究在低分辨率,各向异性数据和晶体孪晶的结构确定中提出了一个困难的案例
    摘要:NorM from Neisseria gonorrhoeae (NorM-NG) belongs to the multidrug and toxic compound extrusion (MATE) family of membrane-transport proteins, which can extrude cytotoxic chemicals across cell membranes and confer multidrug resistance. Here, the structure determination of NorM-NG is described, which had been hampered by low resolution (∼4 Å), data anisotropy and pseudo-merohedral twinning. The crystal structure was solved using molecular replacement and was corroborated by conducting a difference Fourier analysis. The NorM-NG structure displays an extracellular-facing conformation, similar to that of NorM-NG bound to a crystallization chaperone. The approaches taken to determine the NorM-NG structure and the lessons learned from this study are discussed, which may be useful for analyzing X-ray diffraction data with similar shortcomings.
  • 机译 沙门氏菌AadA的结构:单体氨基糖苷(3'')(9)腺苷酸转移酶
    摘要:Aminoglycoside resistance is commonly conferred by enzymatic modification of drugs by aminoglycoside-modifying enzymes such as aminoglycoside nucleo­tidyltransferases (ANTs). Here, the first crystal structure of an ANT(3′′)(9) adenyltransferase, AadA from Salmonella enterica, is presented. AadA catalyses the magnesium-dependent transfer of adenosine monophosphate from ATP to the two chemically dissimilar drugs streptomycin and spectinomycin. The structure was solved using selenium SAD phasing and refined to 2.5 Å resolution. AadA consists of a nucleotidyltransferase domain and an α-helical bundle domain. AadA crystallizes as a monomer and is a monomer in solution as confirmed by small-angle X-ray scattering, in contrast to structurally similar homodimeric adenylating enzymes such as kanamycin nucleotidyltransferase. Isothermal titration calorimetry experiments show that ATP binding has to occur before binding of the aminoglycoside substrate, and structure analysis suggests that ATP binding repositions the two domains for aminoglycoside binding in the interdomain cleft. Candidate residues for ligand binding and catalysis were subjected to site-directed mutagenesis. In vivo resistance and in vitro binding assays support the role of Glu87 as the catalytic base in adenylation, while Arg192 and Lys205 are shown to be critical for ATP binding.
  • 机译 蛋白质中氨基酸有序水合的结构:晶体结构分析
    摘要:Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. The results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.
  • 机译 RC1339 / APRc来自立克次体,一种胃蛋白酶样天冬氨酸蛋白酶的结构
    摘要:The crystal structures of two constructs of RC1339/APRc from Rickettsia conorii, consisting of either residues 105–231 or 110–231 followed by a His tag, have been determined in three different crystal forms. As predicted, the fold of a monomer of APRc resembles one-half of the mandatory homodimer of retroviral pepsin-like aspartic proteases (retropepsins), but the quaternary structure of the dimer of APRc differs from that of the canonical retropepsins. The observed dimer is most likely an artifact of the expression and/or crystallization conditions since it cannot support the previously reported enzymatic activity of this bacterial aspartic protease. However, the fold of the core of each monomer is very closely related to the fold of retropepsins from a variety of retroviruses and to a single domain of pepsin-like eukaryotic enzymes, and may represent a putative common ancestor of monomeric and dimeric aspartic proteases.
  • 机译 ε类和δ类谷胱甘肽S转移酶的比较:果蝇中谷胱甘肽S转移酶DmGSTE6和DmGSTE7的晶体结构
    摘要:Cytosolic glutathione transferases (GSTs) comprise a large family of enzymes with canonical structures that diverge functionally and structurally among mammals, invertebrates and plants. Whereas mammalian GSTs have been characterized extensively with regard to their structure and function, invertebrate GSTs remain relatively unstudied. The invertebrate GSTs do, however, represent potentially important drug targets for infectious diseases and agricultural applications. In addition, it is essential to fully understand the structure and function of invertebrate GSTs, which play important roles in basic biological processes. Invertebrates harbor delta- and epsilon-class GSTs, which are not found in other organisms. Drosophila melanogaster GSTs (DmGSTs) are likely to contribute to detoxication or antioxidative stress during development, but they have not been fully characterized. Here, the structures of two epsilon-class GSTs from Drosophila, DmGSTE6 and DmGSTE7, are reported at 2.1 and 1.5 Å resolution, respectively, and are compared with other GSTs to identify structural features that might correlate with their biological functions. The structures of DmGSTE6 and DmGSTE7 are remarkably similar; the structures do not reveal obvious sources of the minor functional differences that have been observed. The main structural difference between the epsilon- and delta-class GSTs is the longer helix (A8) at the C-termini of the epsilon-class enzymes.
  • 机译 烟酰胺单核苷酸腺苷酸转移酶显示烟酰胺核苷酸的替代结合模式
    摘要:Nicotinamide mononucleotide adenylyltransferase (NMNAT) catalyzes the biosynthesis of NAD+ and NaAD+. The crystal structure of NMNAT from Methanobacterium thermoautotrophicum complexed with NAD+ and SO4 2− revealed the active-site residues involved in binding and catalysis. Site-directed mutagenesis was used to further characterize the roles played by several of these residues. Arg11 and Arg136 were implicated in binding the phosphate groups of the ATP substrate. Both of these residues were mutated to lysine individually. Arg47 does not interact with either NMN or ATP substrates directly, but was deemed to play a role in binding as it is proximal to Arg11 and Arg136. Arg47 was mutated to lysine and glutamic acid. Surprisingly, when expressed in Escherichia coli all of these NMNAT mutants trapped a molecule of NADP+ in their active sites. This NADP+ was bound in a conformation that was quite different from that displayed by NAD+ in the native enzyme complex. When NADP+ was co-crystallized with wild-type NMNAT, the same structural arrangement was observed. These studies revealed a different conformation of NADP+ in the active site of NMNAT, indicating plasticity of the active site.
  • 机译 玉米的新型单体乙二醛酶I的结构
    摘要:The glyoxalase system is ubiquitous among all forms of life owing to its central role in relieving the cell from the accumulation of methylglyoxal, a toxic metabolic byproduct. In higher plants, this system is upregulated under diverse metabolic stress conditions, such as in the defence response to infection by pathogenic microorganisms. Despite their proven fundamental role in metabolic stresses, plant glyoxalases have been poorly studied. In this work, glyoxalase I from Zea mays has been characterized both biochemically and structurally, thus reporting the first atomic model of a glyoxalase I available from plants. The results indicate that this enzyme comprises a single polypeptide with two structurally similar domains, giving rise to two lateral concavities, one of which harbours a functional nickel(II)-binding active site. The putative function of the remaining cryptic active site remains to be determined.
  • 机译 与核糖体蛋白Rpl8复合的含JmjC域的蛋白NO66的结构
    摘要:The JmjC domain-containing proteins belong to a large family of oxygenases possessing distinct substrate specificities which are involved in the regulation of different biological processes, such as gene transcription, RNA processing and translation. Nucleolar protein 66 (NO66) is a JmjC domain-containing protein which has been reported to be a histone demethylase and a ribosome protein 8 (Rpl8) hydroxylase. The present biochemical study confirmed the hydroxylase activity of NO66 and showed that oligomerization is required for NO66 to efficiently catalyze the hydroxylation of Rpl8. The structures of NO66176–C complexed with Rpl8204–224 in a tetrameric form and of the mutant protein M2 in a dimeric form were solved. Based on the results of structural and biochemical analyses, the consensus sequence motif NHXH recognized by NO66 was confirmed. Several potential substrates of NO66 were found by a BLAST search according to the consensus sequence motif. When binding to substrate, the relative positions of each subunit in the NO66 tetramer shift. Oligomerization may facilitate the motion of each subunit in the NO66 tetramer and affect the catalytic activity.
  • 机译 帽结构域封闭可通过C2型卤酸脱卤素酶样糖磷酸酶对恶性疟原虫HAD1进行多种底物识别
    摘要:Haloacid dehalogenases (HADs) are a large enzyme superfamily of more than 500 000 members with roles in numerous metabolic pathways. Plasmodium falciparum HAD1 (PfHAD1) is a sugar phosphatase that regulates the methylerythritol phosphate (MEP) pathway for isoprenoid synthesis in malaria parasites. However, the structural determinants for diverse substrate recognition by HADs are unknown. Here, crystal structures were determined of PfHAD1 in complex with three sugar phosphates selected from a panel of diverse substrates that it utilizes. Cap-open and cap-closed conformations are observed, with cap closure facilitating substrate binding and ordering. These structural changes define the role of cap movement within the major subcategory of C2 HAD enzymes. The structures of an HAD bound to multiple substrates identifies binding and specificity-determining residues that define the structural basis for substrate recognition and catalysis within the HAD superfamily. While the substrate-binding region of the cap domain is flexible in the open conformations, this region becomes ordered and makes direct interactions with the substrate in the closed conformations. These studies further inform the structural and biochemical basis for catalysis within a large superfamily of HAD enzymes with diverse functions.
  • 机译 从生物大分子晶体全自动表征和数据收集
    摘要:Considerable effort is dedicated to evaluating macromolecular crystals at synchrotron sources, even for well established and robust systems. Much of this work is repetitive, and the time spent could be better invested in the interpretation of the results. In order to decrease the need for manual intervention in the most repetitive steps of structural biology projects, initial screening and data collection, a fully automatic system has been developed to mount, locate, centre to the optimal diffraction volume, characterize and, if possible, collect data from multiple cryocooled crystals. Using the capabilities of pixel-array detectors, the system is as fast as a human operator, taking an average of 6 min per sample depending on the sample size and the level of characterization required. Using a fast X-ray-based routine, samples are located and centred systematically at the position of highest diffraction signal and important parameters for sample characterization, such as flux, beam size and crystal volume, are automatically taken into account, ensuring the calculation of optimal data-collection strategies. The system is now in operation at the new ESRF beamline MASSIF-1 and has been used by both industrial and academic users for many different sample types, including crystals of less than 20 µm in the smallest dimension. To date, over 8000 samples have been evaluated on MASSIF-1 without any human intervention.
  • 机译 向内构型的人类乳腺癌抗性蛋白(BCRP / ABCG2)的三维结构
    摘要:ABCG2 is an efflux drug transporter that plays an important role in drug resistance and drug disposition. In this study, the first three-dimensional structure of human full-length ABCG2 analysed by electron crystallography from two-dimensional crystals in the absence of nucleotides and transported substrates is reported at 2 nm resolution. In this state, ABCG2 forms a symmetric homodimer with a noncrystallographic twofold axis perpendicular to the two-dimensional crystal plane, as confirmed by subtomogram averaging. This configuration suggests an inward-facing configuration similar to murine ABCB1, with the nucleotide-binding domains (NBDs) widely separated from each other. In the three-dimensional map, densities representing the long cytoplasmic extensions from the transmembrane domains that connect the NBDs are clearly visible. The structural data have allowed the atomic model of ABCG2 to be refined, in which the two arms of the V-shaped ABCG2 homodimeric complex are in a more closed and narrower conformation. The structural data and the refined model of ABCG2 are compatible with the biochemical analysis of the previously published mutagenesis studies, providing novel insight into the structure and function of the transporter.
  • 机译 基于片段的晶体鸡尾酒筛查揭示了锥虫锥虫组氨酸-tRNA合成酶中的结合热点
    摘要:American trypanosomiasis, commonly known as Chagas disease, is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. The chronic form of the infection often causes debilitating morbidity and mortality. However, the current treatment for the disease is typically inadequate owing to drug toxicity and poor efficacy, necessitating a continual effort to discover and develop new antiparasitic therapeutic agents. The structure of T. cruzi histidyl-tRNA synthetase (HisRS), a validated drug target, has previously been reported. Based on this structure and those of human cytosolic HisRS, opportunities for the development of specific inhibitors were identified. Here, efforts are reported to identify small molecules that bind to T. cruzi HisRS through fragment-based crystallographic screening in order to arrive at chemical starting points for the development of specific inhibitors. T. cruzi HisRS was soaked into 68 different cocktails from the Medical Structural Genomics of Pathogenic Protozoa (MSGPP) fragment library and diffraction data were collected to identify bound fragments after soaking. A total of 15 fragments were identified, all bound to the same site on the protein, revealing a fragment-binding hotspot adjacent to the ATP-binding pocket. On the basis of the initial hits, the design of reactive fragments targeting the hotspot which would be simultaneously covalently linked to a cysteine residue present only in trypanosomatid HisRS was initiated. Inhibition of T. cruzi HisRS was observed with the resultant reactive fragments and the anticipated binding mode was confirmed crystallo­graphically. These results form a platform for the development of future generations of selective inhibitors for trypanosomatid HisRS.
  • 机译 从平移-自由-螺杆结构体预测X射线扩散散射
    摘要:Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophos­phodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.
  • 机译 蛋白质结构中反式-顺式翻转和肽平面翻转的检测
    摘要:A coordinate-based method is presented to detect peptide bonds that need correction either by a peptide-plane flip or by a trans–cis inversion of the peptide bond. When applied to the whole Protein Data Bank, the method predicts 4617 trans–cis flips and many thousands of hitherto unknown peptide-plane flips. A few examples are highlighted for which a correction of the peptide-plane geometry leads to a correction of the understanding of the structure–function relation. All data, including 1088 manually validated cases, are freely available and the method is available from a web server, a web-service interface and through WHAT_CHECK.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号