首页> 美国卫生研究院文献>ACS AuthorChoice >GrapheneNanopore Support System for Simultaneous High-Resolution AFM Imagingand Conductance Measurements
【2h】

GrapheneNanopore Support System for Simultaneous High-Resolution AFM Imagingand Conductance Measurements

机译:石墨烯同时高分辨率AFM成像的纳米孔支持系统和电导率测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Accurately defining the nanoporous structure and sensing the ionic flow across nanoscale pores in thin films and membranes has a wide range of applications, including characterization of biological ion channels and receptors, DNA sequencing, molecule separation by nanoparticle films, sensing by block co-polymers films, and catalysis through metal–organic frameworks. Ionic conductance through nanopores is often regulated by their 3D structures, a relationship that can be accurately determined only by their simultaneous measurements. However, defining their structure–function relationships directly by any existing techniques is still not possible. Atomic force microscopy (AFM) can image the structures of these pores at high resolution in an aqueous environment, and electrophysiological techniques can measure ion flow through individual nanoscale pores. Combining these techniques is limited by the lack of nanoscale interfaces. We have designed a graphene-based single-nanopore support (∼5 nm thick with ∼20 nm pore diameter) and have integrated AFM imaging and ionic conductance recording using our newly designed double-chamber recording systemto study an overlaid thin film. The functionality of this integratedsystem is demonstrated by electrical recording (<10 pS conductance)of suspended lipid bilayers spanning a nanopore and simultaneous AFMimaging of the bilayer.
机译:准确定义纳米孔结构并检测穿过薄膜和膜中纳米级孔的离子流具有广泛的应用,包括生物离子通道和受体的表征,DNA测序,纳米颗粒膜的分子分离,嵌段共聚物膜的检测,并通过金属有机框架进行催化。通过纳米孔的离子电导率通常受其3D结构的调节,这种关系只有通过同时进行测量才能准确确定。但是,仍然不可能直接通过任何现有技术来定义它们的结构-功能关系。原子力显微镜(AFM)可以在水性环境中以高分辨率对这些孔的结构进行成像,而电生理技术可以测量通过单个纳米级孔的离子流。缺乏纳米级界面限制了这些技术的结合。我们设计了基于石墨烯的单纳米孔载体(厚度约5 nm,孔径约20 nm),并使用新设计的双室记录系统集成了AFM成像和离子电导记录研究覆盖的薄膜。该集成的功能电记录(电导<10 pS)演示了该系统跨纳米孔和同时原子力显微镜的悬浮脂质双层的制备双层成像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号