首页> 中文期刊> 《世界胃肠病学杂志:英文版》 >Total flavone of Abelmoschus manihot suppresses epithelial-mesenchymal transition via interfering transforming growth factor-β1 signaling in Crohn's disease intestinal fibrosis

Total flavone of Abelmoschus manihot suppresses epithelial-mesenchymal transition via interfering transforming growth factor-β1 signaling in Crohn's disease intestinal fibrosis

         

摘要

AIM To explore the role and mechanism of total flavone of Abelmoschus manihot(TFA) on epithelial-mesenchymal transition(EMT) progress of Crohn's disease(CD) intestinal fibrosis.METHODS First,CCK-8 assay was performed to assess TFA on the viability of intestinal epithelial(IEC-6) cells and select the optimal concentrations of TFA for our further studies.Then cell morphology,wound healing and transwell assays were performed to examine the effect of TFA on morphology,migration and invasion of IEC-6 cells treated with TGF-β1.In addition,immunofluorescence,real-time PCR analysis(q RT-PCR) and western blotting assays were carried out to detect the impact of TFA on EMT progress.Moreover,western blotting assay was performed to evaluate the function of TFA on the Smad and MAPK signaling pathways.Further,the role of co-treatment of TFA and si-Smad or MAPK inhibitors has been examined by q RTPCR,western blotting,morphology,wound healing andtranswell assays.RESULTS In this study,TFA promoted transforming growth factor-β1(TGF-β1)-induced(IEC-6) morphological change,migration and invasion,and increased the expression of epithelial markers and reduced the levels of mesenchymal markers,along with the inactivation of Smad and MAPK signaling pathways.Moreover,we revealed that si-Smad and MAPK inhibitors effectively attenuated TGF-β1-induced EMT in IEC-6 cells.Importantly,co-treatment of TFA and si-Smad or MAPK inhibitors had better inhibitory effects on TGF-β1-induced EMT in IEC-6 cells than either one of them.CONCLUSION These findings could provide new insight into the molecular mechanisms of TFA on TGF-β1-induced EMT in IEC-6 cells and TFA is expected to advance as a new therapy to treat CD intestinal fibrosis.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号