首页> 中文期刊> 《传感器与微系统》 >基于深度学习的时空特征融合人体动作识别

基于深度学习的时空特征融合人体动作识别

     

摘要

深度学习需要充分利用视频中动作的时空信息来进行动作识别.为了充分利用视频中的时空特征来提高动作识别的准确率,并以较低的成本保存相关信息,提出一种采用稀疏采样方案的时空特征融合动作识别框架.采用稀疏采样获得视频的RGB图和光流图,分别送入VGG-16网络提取视频的时空特征;融合时空卷积神经网络(CNN)提取中层时空融合特征;将中层时空融合特征送入C3D CNN识别出动作的类别.在HMDB51和UCF101两个数据集的实验结果表明:该框架能够充分利用视频的时间信息和空间信息,达到了较高的动作识别准确率.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号