首页> 中文期刊> 《系统工程与电子技术:英文版 》 >Joint waveform selection and power allocation algorithm in manned/unmanned aerial vehicle hybrid swarm based on chance-constraint programming

Joint waveform selection and power allocation algorithm in manned/unmanned aerial vehicle hybrid swarm based on chance-constraint programming

             

摘要

In this paper, we propose a joint waveform selection and power allocation(JWSPA) strategy based on chance-constraint programming(CCP) for manned/unmanned aerial vehicle hybrid swarm(M/UAVHS) tracking a single target. Accordingly,the low probability of intercept(LPI) performance of system can be improved by collaboratively optimizing transmit power and waveform. For target radar cross section(RCS) prediction, we design a random RCS prediction model based on electromagnetic simulation(ES) of target. For waveform selection, we build a waveform library to adaptively manage the frequency modulation slope and pulse width of radar waveform. For power allocation,the CCP is employed to balance tracking accuracy and power resource. The Bayesian Cramér-Rao lower bound(BCRLB) is adopted as a criterion to measure target tracking accuracy. The hybrid intelli gent algorithms, in which the stochastic simulation is integrated into the genetic algorithm(GA), are used to solve the stochastic optimization problem. Simulation results demonstrate that the proposed JWSPA strategy can save more transmit power than the traditional fixed waveform scheme under the same target tracking accuracy.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号