首页> 中文期刊> 《稀有金属:英文版》 >Electrochemical performances of as-cast and annealed La_(0.8-x)Nd_xMg_(0.2)Ni_(3.35)Al_(0.1)Si_0.05(x=0-0.4) alloys applied to Ni/metal hydride (MH) battery

Electrochemical performances of as-cast and annealed La_(0.8-x)Nd_xMg_(0.2)Ni_(3.35)Al_(0.1)Si_0.05(x=0-0.4) alloys applied to Ni/metal hydride (MH) battery

         

摘要

The La-Mg-Ni-based A2B7-type La0.8-xNdxMg0.2Ni3.35 Al0.1Si0.05(x=0,0.1,0.2,0.3,and0.4) electrode alloys were prepared by casting and annealing. The influence of the partial substitution of Nd for La on the structure and electrochemical performances of the alloys was investigated. The structural analysis of X-ray diffraction and scanning electron microscopy reveals that the experimental alloys consist of two major phases: (La,Mg)2Ni7 with the hexagonal Ce2Ni7-type structure and LaNi5 with the hexagonal CaCu 5-type structure as well as some residual phases of LaNi3 and NdNi5 . The electrochemical measurements indicate that an evident change of the electrochemical performance of the alloys is associated with the substitution of Nd for La. The discharge capacity of the alloy first increases then decreases with the growing Nd content, whereas their cycle stability clearly grows all the time. Furthermore, the measurements of the high rate discharge ability, the limiting current density, and hydrogen diffusion coefficient all demonstrate that the electrochemical kinetic properties of the alloy electrodes first augment then decline with the rising amount of Nd substitution.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号