首页> 中文期刊> 《稀有金属:英文版》 >Electrolytic silicon/graphite composite from SiO_(2)/graphite porous electrode in molten salts as a negative electrode material for lithium-ion batteries

Electrolytic silicon/graphite composite from SiO_(2)/graphite porous electrode in molten salts as a negative electrode material for lithium-ion batteries

         

摘要

Nano-silicon(nano-Si)and its composites have been regarded as the most promising negative electrode materials for producing the next-generation Li-ion batteries(LIBs),due to their ultrahigh theoretical capacity.However,the commercial applications of nano Si-based negative electrode materials are constrained by the low cycling stability and high costs.The molten salt electrolysis of SiO_(2)is proven to be suitable to produce nano-Si with the advantages of in-situ microstructure control possibilities,cheap affordability and scale-up process capability.Therefore,an economical approach for electrolysis,with a SiO_(2)/graphite porous electrode as cathode,is adopted to produce nano-Si/graphite composite negative electrode materials(SGNM)in this study.The electrolytic product of the optimized porous electrode is taken as the negative electrode materials for LIBs,and it offers a capacity of 733.2 mAh·g^(-1)and an initial coulombic efficiency of 86.8%in a coin-type cell.Moreover,the capacity of the SGNM retained 74.1%of the initial discharging capacity after 50 cycles at 0.2C,which is significantly higher than that of the simple mixture of silicon and graphite obtained from the formation of silicon carbide(SiC)between nano-Si and graphite particles.Notably,this new approach can be applied to a large-scale production.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号