首页> 中文期刊> 《模式识别与人工智能》 >基于去冗余特征和语义关系约束的零样本属性识别

基于去冗余特征和语义关系约束的零样本属性识别

     

摘要

基于生成式的零样本识别方法在生成特征时受冗余信息和域偏移的影响,识别精度不佳.针对此问题,文中提出基于去冗余特征和语义关系约束的零样本属性识别方法.首先,将视觉特征映射到一个新的特征空间,通过互相关信息对视觉特征进行去冗余处理,在去除冗余视觉特征的同时保留类别的相关性,由于在识别过程中减少冗余信息的干扰,从而提高零样本识别的精度.然后,利用可见类和不可见类之间的语义关系建立知识迁移模型,并引入语义关系约束损失,约束知识迁移的过程,使生成器生成的视觉特征更能反映可见类和不可见类之间语义关系,缓解两者之间的域偏移问题.最后,引入循环一致性结构,使生成的伪特征更接近真实特征.在数据集上的实验证实文中方法提高零样本识别任务的精度,并具有较优的泛化性能.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号