首页> 中文期刊> 《模式识别与人工智能》 >基于对抗图卷积网络的链接预测模型

基于对抗图卷积网络的链接预测模型

     

摘要

大部分的链接预测模型在挖掘节点相似性时过于依赖已知的链接信息,但在真实世界中,已知的观测链接数量通常较少.因此,为了提高模型的鲁棒性,需要提高解耦模型对链接信息的依赖并挖掘节点的潜在特征.文中考虑节点特征和链接之间的潜在关系,提出基于对抗图卷积网络的链接预测模型.首先利用节点间的相似性度量填充邻接矩阵中部分未知链接,缓解链接稀疏对图卷积模型的影响.再利用对抗网络深度挖掘节点特征和链接之间的潜在联系,降低模型对链接的依赖.在真实数据集上的实验表明,文中模型在链接预测问题上具有较好的表现力,在链接稀疏的情况下性能依旧较稳定,同时适用于大规模数据集.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号