首页> 中文期刊> 《模式识别与人工智能》 >变结构径向基函数网络及其在混沌序列在线预测中的应用

变结构径向基函数网络及其在混沌序列在线预测中的应用

     

摘要

为了利用径向基函数(RBF)神经网络对混沌序列进行精确和快速的在线预测,提出一种在线构造变结构RBF神经网络的序贯学习算法.该算法建立实时更新的滑动数据窗口,通过学习窗口内的数据对隐节点进行增加和删除,动态确定RBF神经网络隐节点的数目及中心位置,并对隐层至输出层的连接权值进行在线调整.该算法具有调节参数少、学习速度快以及所得网络结构精简等特点.将该网络用于Mackey-Glass混沌时间序列的在线预测实验,结果验证该算法对该混沌序列具有良好的在线动态辨识和预测性能.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号