首页> 中文期刊> 《模式识别与人工智能》 >基于结构分析的局部Gibbs抽样自动推理算法

基于结构分析的局部Gibbs抽样自动推理算法

     

摘要

提出一种基于结构分析的局部Gibbs抽样的贝叶斯网络推理算法(S-LGSI).S-LGSI算法基于联合树算法的概率图模型分析思想,对贝叶斯网络进行精确分解,然后根据查询结点和证据结点生成具有强相关性的局部网络模型,进而对局部网络模型进行Gibbs抽样推理.与当前基于抽样的其它近似推理算法相比,该算法降低推理的计算维数.同时,由于局部抽样模型包含了与查询结点相关的重要信息,因此该算法保证局部抽样推理的精度.算法分析和在Mann网的实验结果表明,S-LGSI算法较显著降低时间复杂度,同时也提高推理精度.S-LGSI算法应用于上海证券交易所股票网络的推理结果与实际情况基本一致,表现出较强的实用性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号