首页> 中文期刊> 《模式识别与人工智能》 >基于向量表示和标签传播的半监督短文本数据流分类算法

基于向量表示和标签传播的半监督短文本数据流分类算法

     

摘要

社交网络平台产生海量的短文本数据流,具有快速、海量、概念漂移、文本长度短小、类标签大量缺失等特点.为此,文中提出基于向量表示和标签传播的半监督短文本数据流分类算法,可对仅含少量有标记数据的数据集进行有效分类.同时,为了适应概念漂移,提出基于聚类簇的概念漂移检测算法.在实际短文本数据流上的实验表明,相比半监督分类算法和半监督数据流分类算法,文中算法不仅提高分类精度和宏平均,还能快速适应数据流中的概念漂移.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号