首页> 中文期刊> 《模式识别与人工智能》 >基于对比学习和语义增强的多模态推荐算法

基于对比学习和语义增强的多模态推荐算法

     

摘要

产品的多模态数据通常被作为额外的辅助信息引入推荐算法中,丰富用户与产品的表示特征,有效融合用户与产品的交互信息和多模态信息是关键研究内容之一.现有方法在特征融合与语义关联建模上仍存在不足,对此,文中从特征融合视角出发,构建基于对比学习和语义增强的多模态推荐算法.首先,采用图神经网络与注意力机制充分融合协同特征与多模态特征.然后,以协同信息中的交互结构为指导,学习各模态内的语义关联结构.同时,采用对比学习范式捕捉跨模态的表征依赖关系,在对比损失中引入可靠性因子,自适应调整对多模态特征的约束强度,抑制数据噪声的影响.最后,联合优化上述任务,生成推荐结果.在4个真实数据集上的实验表明文中算法的优越性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号