首页> 中文期刊>核聚变与等离子体物理 >微小等离子体反应器的导出机理研究

微小等离子体反应器的导出机理研究

     

摘要

An extraction mechanism based on micronozzle in the bottom of the microhollow cathode and applied bias electrical field is proposed, and digitally simulated with a two dimensional fluid model. When the operating gas is SF6 and its pressure is 2~9kPa, radius of the micronozzle is 0.25μm, maximum F atom flux density is between (l.53~5.62)×1014cm-3.s-1, maximum SF5+ flux density is between (2.46~7.83)×1016cm-3.s-1.When gas pressure is 5kPa, average energy of F atom at sample surface is 3.82eV, dispersion angle is -14°~14°;average energy of SF5+ is 25eV, dispersion angle is -13°~14°. When applied voltage across hollow cathode and sample is between 10~50V (sample as cathode), average energy of SF+5 is between 52~58eV. The density of F and SF +5 in the simulation result could satisfy the requirement for silicon etching, and the feasibility of scanning plasma etching validated.%提出了一种通过空心阴极底部的微孔及外加偏置电场的方法实现微小等离子体导出的机制,并采用二维流体模型对其进行了数值仿真研究.当工作气体为SF6、工作气压为 2~9kPa、微孔半径为 0.25μm 时,F 原子最大束流密度在(1.53~5.62)×1014cm-3·s-1之间,SF5最大束流密度在(2.46~7.83)×1016cm-3·s-1之间.工作气压为 5kPa时,样品表面处 F 的平均能量为 3.82eV,散射角在-14°~14°之间;SF5+的平均能量为 25eV,散射角为-13°~14°.当偏置电压在 10~50V 之间变化时,SF5+平均能量在 52~58eV 之间变化.上述 F、SF5+密度满足硅基底材料的有效刻蚀需要,验证了扫描刻蚀加工的可行性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号