首页> 中文期刊> 《噪声与振动控制》 >DE算法优化CNN的滚动轴承故障诊断研究

DE算法优化CNN的滚动轴承故障诊断研究

     

摘要

针对卷积神经网络(Convolutional Neural Network,CNN)在滚动轴承故障诊断应用中所存在超参数难以确定、网络输出不稳定等问题,提出一种基于差分进化算法(Differential Evolution,DE)优化卷积神经网络的故障诊断模型(CNN-DE)。首先,该故障诊断模型利用DE算法来自适应调节CNN中的超参数,同时将CNN的诊断精度和稳定性一起作为DE算法优化的目标,使得CNN在保证精度的同时降低网络的波动;其次,使用自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)结合多参数的诊断方法,从原始信号中提取出更加有效的故障特征;最后,根据提取出的特征采用CNN-DE、CNN和BP等算法进行故障诊断,结果表明所提出的算法模型拥有更高的精度和更稳定的性能,也具有优异的抗噪能力,显示了CNN-DE在故障诊断应用中的可靠性。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号