首页> 外文期刊>纳米研究(英文版) >Living cell synthesis of CdSe quantum dots: Manipulation based on the transformation mechanism of intracellular Se-precursors
【24h】

Living cell synthesis of CdSe quantum dots: Manipulation based on the transformation mechanism of intracellular Se-precursors

机译:CdSe量子点的活细胞合成:基于细胞内硒前体转化机制的操纵

获取原文
获取原文并翻译 | 示例
       

摘要

Currently, the biosynthesis of nanomaterials by organisms is attracting considerable attention because of the sustainable and environmentally friendly nature of the reactions involved in this process compared with those in the conventional nanomaterial synthesis. However, the manipulation and control of nanomaterial biosynthesis remain difficult because of the lack of knowledge about the biosynthetic mechanisms. In the present study, we elucidated the selenium (Se)-precursor and Se metabolic flux in the biosynthesis of cadmium-selenium quantum dots (CdSe QDs) in Saccharomyces cerevisiae and improved the cells' ability to biosynthesize CdSe QDs through gene modification based on the regulation mechanism. By deleting the genes involved in Se metabolism and measuring seleno-amino acids, we identified selenocysteine (SeCys) as the primary Se-precursor in the intracellular biosynthesis of CdSe QDs. Further studies demonstrated that the selenomethionine (SeMet)-to-SeCys pathway regulates CdSe QD biosynthesis. Knowledge of the regulatory pathway allowed us to enhance SeMet synthesis by overexpression of the MET6 gene, and an increased CdSe QD yield was realized in the engineered cells. Understanding the mechanism of CdSe QD biosynthesis helped to determine the relationship between nanocrystal formation and biological processes, and offers a new perspective to manipulation of nanomaterial biosynthesis.
机译:目前,由于与常规纳米材料合成相比,该过程涉及的反应具有可持续性和环境友好性,因此生物体对纳米材料的生物合成引起了广泛的关注。然而,由于缺乏有关生物合成机理的知识,纳米材料生物合成的操作和控制仍然很困难。在本研究中,我们阐明了酿酒酵母中镉-硒量子点(CdSe QDs)生物合成中的硒(Se)前体和硒代谢通量,并通过基于该基因的基因修饰提高了细胞生物合成CdSe QD的能力。调节机制。通过删除参与硒代谢的基因并测量硒氨基酸,我们确定硒代半胱氨酸(SeCys)是CdSe QDs细胞内生物合成中的主要硒前体。进一步的研究表明,硒代蛋氨酸(SeMet)到SeCys途径调节CdSe QD生物合成。调节途径的知识使我们能够通过过表达MET6基因来增强SeMet合成,并且在工程细胞中实现了CdSe QD产量的增加。了解CdSe QD生物合成的机理有助于确定纳米晶体形成与生物过程之间的关系,并为操纵纳米材料的生物合成提供了新的视角。

著录项

  • 来源
    《纳米研究(英文版)》 |2018年第5期|2498-2511|共14页
  • 作者单位

    Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan 430072, China;

    Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan 430072, China;

    Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China;

    Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China;

    Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China;

    Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan 430072, China;

  • 收录信息 中国科学引文数据库(CSCD);中国科技论文与引文数据库(CSTPCD);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-19 03:47:26
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号