首页> 外文期刊>纳米研究(英文版) >MoS2/MnO2 heterostructured nanodevices for electrochemical energy storage
【24h】

MoS2/MnO2 heterostructured nanodevices for electrochemical energy storage

机译:MoS2 / MnO2异质结构纳米器件,用于电化学储能

获取原文
获取原文并翻译 | 示例
       

摘要

Hybrid or composite heterostructured electrode materials have been widely studied for their potential application in electrochemical energy storage.Whereas their physical or chemical properies could be affected significantly by modulating the heterogeneous interface,the underlying mechanisms are not yet fully understood.In this work,we fabricated an electrochemical energy storage device with a MoS2 nanosheet/MnO2 nanowire heterostructure and designed two charge/discharge channels to study the effect of the heterogeneous interface on the energy storage performances.Electrochemical measurements show that a capacity improvement of over 50% is achieved when the metal current collector was in contact with the MnO2 instead of the MoS2 side.We propose that this enhancement is due to the tmidirectional conductivity of the MoS2/MnO2 heterogeneous interface,resulting from the unimpeded electrical transport in the MnO2-MoS2 channel along with the blocking effect on the electron transport in the MoS2-MnO2 channel,which leads to reaction kinetics optimization.The present study thus provides important insights that will improve our understanding of heterostructured electrode materials for electrochemical energy storage.
机译:杂化或复合异质结构电极材料在电化学储能中的潜在应用已经得到了广泛的研究。尽管它们的物理或化学性质可能会因调制异质界面而受到显着影响,但其潜在机理尚未得到充分的了解。一种具有MoS2纳米片/ MnO2纳米线异质结构的电化学储能装置,并设计了两个充电/放电通道来研究异质界面对储能性能的影响。电化学测量表明,当金属负载时,容量提高了50%以上集电器与MnO2而不是MoS2侧接触。我们认为,这种增强是由于MoS2 / MnO2异质界面的全向电导率,这是由于MnO2-MoS2通道中无阻碍的电传输以及阻挡效应所致。在M中的电子传输oS2-MnO2通道,导致反应动力学最优化。因此,本研究提供了重要的见识,可增进我们对用于电化学储能的异质结构电极材料的理解。

著录项

  • 来源
    《纳米研究(英文版)》 |2018年第4期|2083-2092|共10页
  • 作者单位

    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

    Department of Chemistry, University of California, Berkeley, California 94720, USA;

    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

    Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA;

    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;

  • 收录信息 中国科学引文数据库(CSCD);中国科技论文与引文数据库(CSTPCD);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-19 03:47:26
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号