首页> 中文期刊> 《组合机床与自动化加工技术》 >基于CEEMDAN-FastICA的滚动轴承故障特征提取

基于CEEMDAN-FastICA的滚动轴承故障特征提取

     

摘要

针对轴承早期故障信号微弱、故障特征难以提取的问题,提出一种将完备集合经验模态分解(CEEMDAN)与快速独立分量分析(FastICA)相结合的故障特征提取方法.该方法首先利用CEEMDAN将轴承故障信号进行分解,得到一系列模态分量(IMF);然后依据峭度准则选取相应分量进行重构,引入虚拟噪声通道;最后利用FastICA对重构信号进行解混去噪,分离出源信号的最佳估计信号后进行包络谱分析进而提取故障特征频率.该方法通过LabVIEW软件平台进行编程实现.仿真信号和轴承故障实验信号的研究结果均表明该方法可明显降低噪声和调制成分干扰,突出故障特征频率成分.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号