首页> 中文期刊> 《网络安全与数据治理》 >基于深度学习的车辆检测算法研究

基于深度学习的车辆检测算法研究

     

摘要

针对目前车辆实时检测中存在定位不准确、检测精度低等问题,采用了一种以Darknet-53为骨架网络的YOLOv3车辆检测算法,将该算法模型在标准数据集Pascal-VOC2012上进行训练,以拍摄的西安南二环路的图片作为测试集进行测试。实验结果表明,YOLOv3算法的检测精度达到84.9%,相比于SSD算法,其检测精度提高了11.3%,检测速度提高了3.8 f/s。因此YOLOv3算法检测精度更好,检测速度更快,能准确地检测出图像中的车辆信息,满足车辆实时检测的要求。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号