首页> 中文期刊> 《微型机与应用》 >基于KDMSPCS-GRNN的室内定位技术研究

基于KDMSPCS-GRNN的室内定位技术研究

     

摘要

针对利用广义神经网络(Generalized Regression Neural Network,GRNN)搭建的定位预测模型定位精度低、效率慢等问题,基于动态分群策略,提出一种线性递减粒子群(Linear Decreasing Contraction Particle Swarm Optimization,LDCPSO)和布谷鸟(Cuckoo Search,CS)混合寻优算法,并利用此算法为GRNN选择最优参数,构建定位预测模型.该算法主要利用K均值聚类算法(K-means)对整个种群进行周期性的分群,底层使用LDCPSO算法优化各个子群,并将最优粒子传至高层,高层使用CS算法优化各个子群的最优粒子,并将最终结果返回底层,执行下一次迭代.实验过程中,一方面将提出的算法应用于多个测试函数,结果表明该算法具有更好的收敛速度和收敛精度;另一方面利用该算法搭建定位模型,并与其他定位模型对比,结果显示该定位模型具有更好的定位效果.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号