首页> 中文期刊>金属学报:英文版 >STRUCTURAL TRANSFORMATION INDUCED BY MECHANICALLY DRIVEN ALLOYING AND SUBSEQUENT MAGNETIC PROPERLIESOF THE Fe-Cu SYSTEM

STRUCTURAL TRANSFORMATION INDUCED BY MECHANICALLY DRIVEN ALLOYING AND SUBSEQUENT MAGNETIC PROPERLIESOF THE Fe-Cu SYSTEM

     

摘要

The structural transformation in Fe-Cu powder induced by mechanically driven alloying has been monitored by the lattice constant measurements and Mossbauer spectroscopy. For the samples with Cu higher than 75at.% Mossbauer the spectra show a broad paramagnetic doublet; for samples with 50 and 60at.%Cu a new broad ferromagnetic sextet; for those with less than 30at.%Cu similar to those of α-Fe. The main peaks of the hyperfine field distribution significantly broaden and shift to a lower position with increasing Cu content due to the complex environments of iron atoms in the solid solutions and the reduction in the nearest neighbor Fe of a cental Fe atom, respectively. The saturation magnetization of Fe-Cu alloys monotonously decreases with Cu content. The complex composition dependence of coercive field for the milled samples is discussed with respect to the solid dissolution, grain size, interfacial state etc.. The increase of lattice constants with the solute content in the two terminal solid solutions has been explained by the volume-size factor theory or magnetovolume effect.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号