首页> 中文期刊> 《农业科学学报(英文版)》 >Spatial and Temporal Characteristics of Rice Potential Productivity and Potential Yield Increment in Main Production Regions of China

Spatial and Temporal Characteristics of Rice Potential Productivity and Potential Yield Increment in Main Production Regions of China

         

摘要

The vast area and marked variation of China make it difficult to predict the impact of climate changes on rice productivity in different regions. Therefore, analyzing the spatial and temporal characteristics of rice potential productivity and predicting the possible yield increment in main rice production regions of China is important for guiding rice production and ensuring food security. Using meteorological data of main rice production regions from 1961 to 1970 (the 1960s) and from 1996 to 2005 (the 2000s) provided by 333 stations, the potential photosynthetic, photo-thermal and climatic productivities in rice crop of the 1960s and 2000s in main rice production regions of China were predicted, and differences in the spatial and temporal distribution characteristics between two decades were analyzed. Additionally, the potential yield increment based on the high yield target and actual yield of rice in the 2000s were predicted. Compared with the 1960s, the potential photosynthetic productivity of the 2000s was seen to have decreased by 5.40%, with rates in northeastern and southwestern China found to be lower than those in central and southern China. The potential photo-thermal productivity was generally seen to decrease (2.56%) throughout main rice production regions, decreasing most in central and southern China. However, an increase was seen in northeastern and southwestern China. The potential climatic productivity was observed to be lower (7.44%) in the 2000s compared to the 1960s, but increased in parts of central and southern China. The potential yield increment from the actual yield to high yield target in the 2000s were no more than 6×103 kg ha-1 and ranged from 6×103 to 12×103 kg ha-1 in most of the single-and double-cropping rice growing regions, respectively. The yield increasing potential from the high yield target to the potential photo-thermal productivity in 2000s were less than 10×103 kg ha-1 and ranged from 10×103 to 30×103 kg ha-1 in most of the single-and double-cropping rice growing regions, respectively. The potential yield increment contributed by irrigation was between 5×103 and 20×103 kg ha-1, and between 20×103 and 40×103 kg ha-1 in most of the single-and double-cropping rice growing regions, respectively. These findings suggested that the high yield could be optimized by making full use of climatic resources and through a reasonable management plan in rice crop.

著录项

  • 来源
    《农业科学学报(英文版)》 |2013年第1期|45-56|共12页
  • 作者单位

    National Engineering and Technology Center for Information Agriculture, Ministry of Industry and Information Technology/Key Laboratory for Information Agriculture, Science and Technology Department of Jiangsu Province/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R.China;

    National Engineering and Technology Center for Information Agriculture, Ministry of Industry and Information Technology/Key Laboratory for Information Agriculture, Science and Technology Department of Jiangsu Province/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R.China;

    National Engineering and Technology Center for Information Agriculture, Ministry of Industry and Information Technology/Key Laboratory for Information Agriculture, Science and Technology Department of Jiangsu Province/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R.China;

    National Engineering and Technology Center for Information Agriculture, Ministry of Industry and Information Technology/Key Laboratory for Information Agriculture, Science and Technology Department of Jiangsu Province/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R.China;

    National Engineering and Technology Center for Information Agriculture, Ministry of Industry and Information Technology/Key Laboratory for Information Agriculture, Science and Technology Department of Jiangsu Province/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R.China;

  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号