首页> 中文期刊>环境科学学报:英文版 >Selection of appropriate organic additives for enhancing Zn and Cd phytoextraction by hyperaccumulators

Selection of appropriate organic additives for enhancing Zn and Cd phytoextraction by hyperaccumulators

     

摘要

Chelant-enhanced phytoextraction is one of the most promising technologies to remove heavy metals from soil. The key of the technology is to choose suitable additives in combination with a suitable plant. In the present study, laboratory batch experiment of metal solubilization, cress seeds germination were undertaken to investigate the metal-mobilizing capability and the phytotoxicity of organic additives, including ethylene diamine triacetic acid (EDTA), citric acid, acetic acid, oxalic acid, glutamine and monosodium glutamate waste liquid (MGWL) from food industry. Experiments in pots were carried out to study the effects of the additives on Zn and Cd phytoextraction. Furthermore, a leaching experiment with lysimeter was performed to evaluate the environmental risks of additive-induced leaching to underground water. The results showed that EDTA had a strong mobilizing ability for Zn and Cd, followed by mixed reagent (MR) and MGWL. MGWL and acetic acid at 5 mmol equivalent per liter resulted in seed germination index less than 2%. Experiments in pots verified the phytotoxicity of acetic acid and MGWL. Addition of the mixed reagent at 6—10 mmol/kg significantly increased Zn phytoextraction by Thlaspi caerulescens. The same for EDTA and the mixed reagent at 10 mmol/kg by Sedum alfredii. But only mixed reagents could significantly increase Cd phytoextraction by the studied hyperaccumulators. This suggested that the strong chelant was not always the good agent to enhance phytoextraction. S. alfredii combined with 2—10 mmol/kg soil MR was preferred for phytoremediation of Cd/Zn contaminated soils in southern China, this could result in high phytoextraction of Cd/Zn and reduce the leaching risk to underground water than EDTA assisted phytoextration.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号