首页> 中文期刊> 《能源化学:英文版》 >Utilizing 3,4-ethylenedioxythiophene(EDOT)-bridged non-fullerene acceptors for efficient organic solar cells

Utilizing 3,4-ethylenedioxythiophene(EDOT)-bridged non-fullerene acceptors for efficient organic solar cells

         

摘要

A rational design of efficient low-band-gap non-fullerene acceptors(NFAs)for high-performance organic solar cells(OSCs)remains challenging;the main constraint being the decrease in the energy level of the lowest unoccupied molecular orbitals(LUMOs)as the bandgap of A-D-A-type NFAs decrease.Therefore,the short current density(J_(sc))and open-circuit voltage(V_(oc))result in a trade-off relationship,making it difficult to obtain efficient OSCs.Herein,three NFAs(IFL-ED-4 F,IDT-ED-4 F,and IDTT-ED-2 F)were synthesized to address the above-mentioned issue by introducing 3,4-ethylenedioxythiophene(EDOT)as aπ-bridge.These NFAs exhibit relatively low bandgaps(1.67,1.42,and 1.49 eV,respectively)and upshifted LUMO levels(-3.88,-3.84,and-3.81 eV,respectively)compared with most reported low-band-gap NFAs.Consequently,the photovoltaic devices based on IDT-ED-4 F blended with a PBDB-T donor polymer showed the best power conversion efficiency(PCE)of 10.4%with a high J_(sc) of 22.1 mA cm^(-2) and Voc of 0.884 V among the examined NFAs.In contrast,IDTT-ED-4 F,which was designed with an asymmetric structure of the D-p-A type,showed the lowest efficiency of 1.5%owing to the poor morphology and charge transport properties of the binary blend.However,when this was introduced as the third component of the PM6:BTP-BO-4 Cl,complementary absorption and cascade energy-level alignment between the two substances could be achieved.Surprisingly,the IDTT-ED-4 F-based ternary blend device not only improved the Jscand Voc,but also achieved a PCE of 15.2%,which is approximately 5.3%higher than that of the reference device with a minimized energy loss of 0.488 eV.In addition,the universality of IDTT-ED-2 F as a third component was effectively demonstrated in other photoactive systems,specifically,PM6:BTPe C9 and PTB7-Th:IEICO-4 F.This work facilitates a better understanding of the structure–property relationship for utilizing efficient EDOT-bridged NFAs in high-performance OSC applications.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号