首页> 中文期刊> 《能源化学:英文版》 >Triple-phase interfaces of graphene-like carbon clusters on antimony trisulfide nanowires enable high-loading and long-lasting liquid Li_(2)S_(6)-based lithium-sulfur batteries

Triple-phase interfaces of graphene-like carbon clusters on antimony trisulfide nanowires enable high-loading and long-lasting liquid Li_(2)S_(6)-based lithium-sulfur batteries

         

摘要

High performance of lithium-sulfur batteries have been dragged down by their shuttling behavior which is complicated multiphase transition-based 16-electron redox reactions of the S8/Li2 S.In this article,the triple-phase interfaces of graphene-like carbon clusters on antimony trisulfide(C-Sb_(2)S_(3))nanowires are tailored to design a multifunctional polysulfide host which can inhibit migration of polysulfides and accelerate conversion kinetics of redox electrochemical reactions.Benefiting from the triple-interface design of polysulfides/Sb_(2)S_(3)/carbon clusters,the C-Sb_(2)S_(3) electrode not only anchors polysulfide migration by the synergistic effect of Sb,S,and C atoms as interfacial active sites,but also the graphene-like carbon clusters shorten the diffusion paths to further favor redox electron/ion transport through the liquid(electrolyte/polysulfide)and solid(Li2 S/S8,carbon clusters,and Sb_(2)S_(3))-based triple-phases.Therefore,these Li_(2)S_(6)-based C-Sb_(2)S_(3) cells possess high sulfur loading,excellent cycling stability,impressive specific capacity,and great rate capability.This work of interfacial engineering reveals insight for powering reaction kinetics in the complicated multistep catalysis reaction with multiphase evolution-based chargetransfer/non-transfer processes.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号