首页> 中文期刊> 《能源化学:英文版》 >Ultralow-temperature assisted synthesis of single platinum atoms anchored on carbon nanotubes for efficiently electrocatalytic acidic hydrogen evolution

Ultralow-temperature assisted synthesis of single platinum atoms anchored on carbon nanotubes for efficiently electrocatalytic acidic hydrogen evolution

         

摘要

Although platinum(Pt) is highly active for hydrogen evolution reaction(HER)[1], it is crucial to explore the effective approach for minimizing the Pt loading amount in the practical application. Herein, one ultralow-temperature solution reduction approach is developed to anchor atomically dispersed Pt atoms on carbon nanotubes(Pt-CNTs), which decelerates the diffusion rate of Pt Cl2-6 ion reached onto the carbon nanotubes and lowers the free energy of Pt atoms in the solution to reduce the probability of the Pt aggregation. The obtained Pt-CNTs exhibits a low overpotential of 41 mV@10 mA cm^(-2) for HER in acidic media. The calculation results revealed that the improvement of the electrocatalytic activity is contributed by the interaction between CNTs and Pt atoms, which descreases the the Pt d band cneter referred to the Fermi level and lowers the Gibbs free energy of H*adsorption. This work may provide one easy and convenient strategy for the large-scale use of Pt catalysts in practical applications.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号