首页> 外文期刊>能源化学:英文版 >Transition metal nanoparticles supported La-promoted MgO as catalysts for hydrogen production via catalytic decomposition of ammonia
【24h】

Transition metal nanoparticles supported La-promoted MgO as catalysts for hydrogen production via catalytic decomposition of ammonia

机译:过渡金属纳米粒子负载La促进的MgO作为通过氨催化分解制氢的催化剂

获取原文
获取原文并翻译 | 示例
       

摘要

The uniformly dispersed transition metal(Co, Ni and Fe) nanoparticles supported on the surface of La-promoted Mg O were prepared via a deposition-precipitation method for hydrogen production from catalytic decomposition of ammonia. X-ray diffraction, N2 adsorption-desorption, transmission electron microscopy, temperature-programmed reduction and temperature-programmed desorption were used to investigate the structure-activity relation of catalysts in NH3 decomposition. The results show that the strong interaction between active species and support can effectively prevent the active species from agglomerating during ammonia decomposition reaction. In addition, the introduction of La species not only facilitates the adsorption and decomposition of NH3 and desorption of N2, but also benefits the better dispersion of the active species. The prepared catalysts showed very high catalytic activity for ammonia decomposition compared with the same active composition samples that reported previously. Meanwhile, the catalysts showed excellent high-temperature stability and no any deactivation was observed, which are very promising candidates for the decomposition of ammonia to hydrogen.
机译:The uniformly dispersed transition metal(Co, Ni and Fe) nanoparticles supported on the surface of La-promoted Mg O were prepared via a deposition-precipitation method for hydrogen production from catalytic decomposition of ammonia. X-ray diffraction, N2 adsorption-desorption, transmission electron microscopy, temperature-programmed reduction and temperature-programmed desorption were used to investigate the structure-activity relation of catalysts in NH3 decomposition. The results show that the strong interaction between active species and support can effectively prevent the active species from agglomerating during ammonia decomposition reaction. In addition, the introduction of La species not only facilitates the adsorption and decomposition of NH3 and desorption of N2, but also benefits the better dispersion of the active species. The prepared catalysts showed very high catalytic activity for ammonia decomposition compared with the same active composition samples that reported previously. Meanwhile, the catalysts showed excellent high-temperature stability and no any deactivation was observed, which are very promising candidates for the decomposition of ammonia to hydrogen.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号