首页> 中文期刊> 《能源化学:英文版》 >Stability and activity of carbon nanofiber-supported catalysts in the aqueous phase reforming of ethylene glycol

Stability and activity of carbon nanofiber-supported catalysts in the aqueous phase reforming of ethylene glycol

         

摘要

Nickel, cobalt, copper and platinum nanoparticles supported on carbon nano-fibers were evaluated with respect to their stability, catalytic activity and selectivity in the aqueous phase reforming of ethylene glycol (230 C, autogenous pressure, batch reactor). The initial surface-specific activities for ethylene glycol reforming were in a similar range but decreased in the order of Pt (15.5 h1 ) >Co(13.0 h1 ) >Ni(5.2 h1 ) while the Cu catalyst only showed low dehydrogenation activity. The hydrogen molar selectivity decreased in the order of Pt (53%)>Co(21%)>Ni (15%) as a result of the production of methane over the latter two catalysts. Over the Co catalyst acids were formed in the liquid phase while alcohols were formed over Ni and Pt. Due to the low pH of the reaction mixture, especially in the case of Co (as a result of the formed acids), significant cobalt leaching occurs which resulted in a rapid deactivation of this catalyst. Investigations of the spent catalysts with various techniques showed that metal particle growth is responsible for the deactivation of the Pt and Ni catalysts. In addition, coking might also contribute to the deactivation of the Ni catalyst.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号