首页> 中文期刊> 《计算机应用》 >基于改进Inception结构的知识图谱嵌入模型

基于改进Inception结构的知识图谱嵌入模型

     

摘要

知识图谱嵌入(KGE)将实体和关系映射到低维连续向量空间中,以利用机器学习方法实现关系数据的应用,如知识分析、推理、补全等。以ConvE为代表将卷积神经网络(CNN)应用于知识图谱嵌入中,以捕捉实体和关系的交互信息,但其标准卷积捕捉特征交互信息能力不足,特征表达能力低下。针对特征交互能力不足问题,提出了一种改进的Inception结构,在此基础上构建一个知识图谱嵌入模型InceE。首先,该结构使用混合空洞卷积替代标准卷积,以提高特征交互信息捕捉能力;其次,使用残差网络结构,以减少特征信息丢失。实验使用基准数据集Kinship、FB15k、WN18验证InceE链接预测有效性。在Kinship、FB15k数据集上,相较于ArcE和QuatRE模型,InceE的Hit@1分别提升了1.6和1.5个百分点;在三个数据集上,与ConvE对比,InceE的Hit@1分别提升了6.3、20.8和1.0个百分点。实验结果表明InceE具有更强的特征交互信息捕捉能力。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号