首页> 中文期刊> 《北京理工大学学报:英文版》 >Robustness and precision evaluation of the form error of micro-structured surfaces using real coded genetic algorithm

Robustness and precision evaluation of the form error of micro-structured surfaces using real coded genetic algorithm

         

摘要

To obtain the form error of micro-structured surfaces robustly and accurately, a form error evaluation method was developed based on the real coded genetic algorithm (RCGA). The method employed the average squared distance as the matching criterion. The point to surface distance was achieved by use of iterative method and the modeling of RCGA for the surface matching was also presented in detail. Parameter selection for RCGA including the crossover rate and population size was discussed. Evaluation results of series simulated surfaces without form error show that this method can achieve the accuracy of root mean square deviation (Sq)less than 1 nm and surface profile error (St)less than 4 nm. Evaluation of the surfaces with different simulated errors illustrates that the proposed method can also robustly obtain the form error with nano-meter precision. The evaluation of actual measured surfaces further indicates that the proposed method is capable of precisely evaluating micro-structured surfaces.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号