首页> 中文期刊> 《北京理工大学学报:英文版》 >Study on Ultra-Short Laser Pulse Ablation of Metals by Molecular Dynamics Simulation

Study on Ultra-Short Laser Pulse Ablation of Metals by Molecular Dynamics Simulation

         

摘要

The dynamical progresses involved in ultra-short laser pulse ablation of face-centered cubic metals under stress confinement condition are described completely using molecular dynamics method. The laser beam absorption and thermal energy turning into kinetics energy of atoms are taken into account to give a detailed picture of laser metal interaction. Superheating phenomenon is observed, and the phase change from solid to liquid is characterized by a destroyed atom configuration and a decreased number density. The steep velocity gradients are found in the systems of Cu and Ni after pulse in consequence of located heating and exponential decrease of fluences following the Lambert-Beer expression. The shock wave velocities are predicted to be about 5000m/s in Cu and 7200m/s in Ni. The higher ablation rates are obtained from simulations compared with experimental data as a result of a well-defined crystalline surface irradiated by a single pulse. Simulation results show that the main mechanisms of ablation are evaporation and thermoelastic stress due to located heating.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号