首页> 中文期刊> 《北京理工大学学报:英文版》 >Analysis and Optimization of Inside-Cushion Structure in High-Speed Hydraulic Cylinders

Analysis and Optimization of Inside-Cushion Structure in High-Speed Hydraulic Cylinders

         

摘要

An inside-cushion structure with sidestep and taper-shaped plungers is studied to address the problems of high impact and vibration in high-speed hydraulic cylinders.First,the three stages of cushion processes are discussed according to the varying flow area as the piston moves.Then,to establish a precise mathematical model,the states of the flow field are estimated in terms of the Reynolds number.Accordingly,the simulation model parameterized against measured data is developed and verified by experiment.Last,the average velocity,peak cushion pressure,and terminal velocity are defined to evaluate cushion performance.According to these optimized objectives,the non-linear programming by quadratic Lagrange(NLPQL)algorithm is applied to optimize the structure parameters.The optimization results indicate that the peak cushion pressure is reduced by 28%and terminal velocity is reduced by 21%without reduction of average velocity.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号