首页> 外文期刊>畜牧与生物技术杂志:英文版 >Estimation of inbreeding and identification of regions under heavy selection based on runs of homozygosity in a Large White pig population
【24h】

Estimation of inbreeding and identification of regions under heavy selection based on runs of homozygosity in a Large White pig population

机译:基于大白猪群纯合杂体杂种的重选区近亲繁殖与鉴定

获取原文
获取原文并翻译 | 示例
       

摘要

Background: Runs of homozygosity(ROHs) are homozygous segments of the genome where the two haplotypes inherited from the parents are identical. The current availability of genotypes for a very large number of single nucleotide polymorphisms(SNPs) is leading to more accurate characterization of ROHs in the whole genome. Here,we investigated the occurrence and distribution of ROHs in 3,692 Large White pigs and compared estimates of inbreeding coefficients calculated based on ROHs(FROH), homozygosity(FHOM), genomic relationship matrix(FGRM)and pedigree(FPED). Furthermore, we identified genomic regions with high ROH frequencies and annotated their candidate genes.Results: In total, 176,182 ROHs were identified from 3,569 animals, and all individuals displayed at least one ROH longer than 1 Mb. The ROHs identified were unevenly distributed on the autosomes. The highest and lowest coverages of Sus scrofa chromosomes(SSC) by ROH were on SSC14 and SSC13, respectively. The highest pairwise correlation among the different inbreeding coefficient estimates was 0.95 between FROH_totaland FHOM, while the lowest was-0.083 between FGRMand FPED. The correlations between FPEDand FROHusing four classes of ROH lengths ranged from 0.18 to 0.37 and increased with increasing ROH length, except for ROH > 10 Mb. Twelve ROH islands were located on four chromosomes(SSC1, 4, 6 and 14). These ROH islands harboured genes associated with reproduction, muscular development, fat deposition and adaptation, such as SIRT1, MYPN, SETDB1 and PSMD4.Conclusion: FROHcan be used to accurately assess individual inbreeding levels compared to other inbreeding coefficient estimators. In the absence of pedigree records, FROHcan provide an alternative to inbreeding estimates.Our findings can be used not only to effectively increase the response to selection by appropriately managing the rate of inbreeding and minimizing the negative effects of inbreeding depression but also to help detect genomic regions with an effect on traits under selection.
机译:背景:纯合子(RoHS)的贯穿基因组的纯合子段,其中来自父母遗传的两种单倍型是相同的。用于非常大量的单核苷酸多态性(SNP)的基因型的当前可用性导致全基因组中的RoHS更准确地表征。在这里,我们研究了3,692个大白猪中的RoHs的发生和分布,并比较了基于RoHS(FROH),纯合子(FHOM),基因组关系基质(FGRM)和谱系(FFPE)计算的近亲繁殖系数的近亲系数的估计。此外,我们鉴定了具有高RoH频率的基因组区域,并向其候选基因注释。结果:总共鉴定了176,182只动物,所有人展示至少一个超过1 MB的ROH。鉴定的ROHS在常染色体上不均匀地分布。 ROH的SUS scrofa染色体(SSC)的最高和最低覆盖率分别在SSC14和SSC13上。在FROH_TOTALAND FHOM之间的不同近亲繁殖系数估计之间的比成最高相关性为0.95,而FGRMAND之间的最低为-0.083。 FPEDAND之间的相关性四类ROH长度范围为0.18至0.37,随着ROH> 10 MB除了增加的ROH长度而增加。十二个罗哈岛位于四条染色体上(SSC1,4,6和14)。这些Roh岛患有与繁殖,肌肉发育,脂肪沉积和适应相关的基因,如SIRT1,MyPn,SetdB1和PSMD4.Conclusion:与其他近亲繁殖系数估算器相比,Frohcan用于准确地评估个体近亲繁殖水平。在没有血统记录的情况下,Frohcan提供了近亲繁殖估计的替代方案。通过适当地管理近亲繁殖率并最大限度地减少近亲繁殖抑郁症的负面影响,而且可以使用调查结果来有效地增加对选择的响应,但最小化近亲繁殖的抑郁症的负面影响,还可以帮助检测基因组具有效果的地区选择选择。

著录项

  • 来源
    《畜牧与生物技术杂志:英文版》 |2020年第004期|P.965-974|共10页
  • 作者单位

    Key Laboratory of Animal Genetics Breeding and Reproduction(poultry)of Ministry of Agricuture Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing 100193 China;

    Key Laboratory of Animal Genetics Breeding and Reproduction(poultry)of Ministry of Agricuture Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing 100193 China;

    Key Laboratory of Animal Genetics Breeding and Reproduction(poultry)of Ministry of Agricuture Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing 100193 China;

    Key Laboratory of Animal Genetics Breeding and Reproduction(poultry)of Ministry of Agricuture Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing 100193 China;

    Key Laboratory of Animal Genetics Breeding and Reproduction(poultry)of Ministry of Agricuture Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing 100193 China;

    Key Laboratory of Animal Genetics Breeding and Reproduction(poultry)of Ministry of Agricuture Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing 100193 China;

    Key Laboratory of Animal Genetics Breeding and Reproduction(poultry)of Ministry of Agricuture Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing 100193 China;

    Key Laboratory of Animal Genetics Breeding and Reproduction(poultry)of Ministry of Agricuture Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing 100193 China;

    Key Laboratory of Animal Genetics Breeding and Reproduction(poultry)of Ministry of Agricuture Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing 100193 China;

    Key Laboratory of Animal Genetics Breeding and Reproduction(poultry)of Ministry of Agricuture Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing 100193 China;

    Key Laboratory of Animal Genetics Breeding and Reproduction(poultry)of Ministry of Agricuture Institute of Animal Sciences Chinese Academy of Agricultural Sciences Beijing 100193 China;

  • 收录信息 中国科学引文数据库(CSCD);
  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类 世界工业经济;
  • 关键词

    Candidate genes; Inbreeding coefficients; Runs of homozygosity; Sus scrofa;

    机译:候选基因;近亲繁殖系数;纯合子的运行;SUS Scrofa;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号