首页> 中文期刊> 《农业科学学报:英文版》 >Exploring the nano-fungicidal efficacy of green synthesized magnesium oxide nanoparticles(MgO NPs)on the development,physiology,and infection of carrot(Daucus carota L.)with Alternaria leaf blight(ALB):Molecular docking

Exploring the nano-fungicidal efficacy of green synthesized magnesium oxide nanoparticles(MgO NPs)on the development,physiology,and infection of carrot(Daucus carota L.)with Alternaria leaf blight(ALB):Molecular docking

         

摘要

In this research,green synthesized magnesium oxide nanoparticles(Mg O NPs)from lemon fruit extracts and their fungicidal potential was evaluated against Alternaria dauci infection on carrot(Daucus carota L.)under greenhouse conditions.The scanning and transmission electron microscopy(SEM and TEM)and ultra-violet(UV)visible spectroscopy were used to validate and characterize Mg O NPs.The crystalline nature of Mg ONPs was determined using selected area electron diffraction(SAED).Mg O NPs triggered substantial antifungal activity against A.dauci when exposed to 50 and 100 mg L^(–1)concentrations but the higher antifungal potential was noticed in 100 mg L^(–1)under invitro conditions.In fungal inoculated plants,a marked decrease in growth,photosynthetic pigments,and an increase in phenol,proline contents,and defense-related enzymes of carrot were seen over control(distilled water).However,foliar application of Mg O NPs at 50 and 100 mg L^(–1)resulted in significant improvement of plant growth,photosynthetic pigments,phenol and proline contents,and defense enzymes activity of carrots with and without A.dauci infection.Spraying of Mg O NPs at 100 mg L^(–1)had more plant length(17.11%),shoot dry weight(34.38%),plant fresh weight(20.46%),and root dry weight(49.09%)in carrots when challenged with A.dauci over inoculated control.The leaf blight indices and percent disease severity were also reduced in A.dauci inoculated plants when sprayed with Mg O NPs.The non-bonding interactions of Alternaria genus protein with nanoparticles were studied using molecular docking.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号