首页> 中文期刊> 《矿物冶金与材料学报:英文版》 >Hydraulic turbine system identification and predictive control based on GASA-BPNN

Hydraulic turbine system identification and predictive control based on GASA-BPNN

         

摘要

Based on the characteristics of nonlinearity,multi-case,and multi-disturbance,it is difficult to establish an accurate parameter mod-el on the hydraulic turbine system which is limited by the degree of fitting between parametric model and actual model,and the design of con-trol algorithm has a certain degree of limitation.Aiming at the modeling and control problems of hydraulic turbine system,this paper proposes hydraulic turbine system identification and predictive control based on genetic algorithm-simulate anneal and back propagation neural network(GASA-BPNN),and the output value predicted by GASA-BPNN model is fed back to the nonlinear optimizer to output the control quantity.The results show that the output speed of the traditional control system increases greatly and the speed of regulation is slow,while the speed of GASA-BPNN predictive control system increases little and the regulation speed is obviously faster than that of the traditional control system.Compared with the output response of the traditional control of the hydraulic turbine governing system,the neural network predictive control-ler used in this paper has better effect and stronger robustness,solves the problem of poor generalization ability and identification accuracy of the turbine system under variable conditions,and achieves better control effect.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号