首页> 中文期刊> 《材料科学技术:英文版》 >Concurrent improvements of corrosion resistance and coercivity in Nd-Ce-Fe-B sintered magnets through engineering the intergranular phase

Concurrent improvements of corrosion resistance and coercivity in Nd-Ce-Fe-B sintered magnets through engineering the intergranular phase

         

摘要

Usually the improved coercivity of rare earth(RE)based 2:14:1-type permanent magnets via RE-rich intergranular additives is achieved at the cost of more corrosion channels and deteriorated corrosion resistance,which remains a challenging hurdle in the RE-Fe-B community.Distinctly,here we report the concurrent improvements of corrosion resistance and coercivity in 40 wt.%Ce-substituted Nd-Ce-Fe-B sintered magnets through engineering the intergranular phase using simple(Nd,Pr)H_(x)additive.The dehydrogenated Nd/Pr changes the RE concentration gradients between 2:14:1 matrix and intergranular phases during sintering and enlarges the fraction of corrosion-resistant REFe_(2) phase,rather than the conventionally assumed Nd/Pr-rich intergranular phase with high chemical vulnerability.The spontaneous formation of REFe_(2) intergranular phase after(Nd,Pr)H_(x) addition generates the uniquely enhanced corrosion resistance against the hot/humid and acidic environments,and counts as one peculiar feature of Nd-Ce-Fe-B magnets at high Ce substitution level,being distinct from previously reported Ce-free/lean RE-Fe-B.Simultaneously,the formation of continuous grain boundaries enhances the coercivity from 8.7to 12.5 k Oe with trace addition of(Nd,Pr)H_(x).Above findings may spur progress towards developing a high-performance Nd-Ce-Fe-B permanent magnet.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号