首页> 中文期刊> 《材料科学技术:英文版》 >The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy

The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy

         

摘要

The mechanical properties and deformation mechanism of a C-doped interstitial high-entropy alloy(i HEA)with a nominal composition of Fe_(49.5)Mn_(29.7)Co_(9.9)Cr_(9.9)C_(1)(at.%)were investigated.An excellent combination of strength and ductility was obtained by cold rolling and annealing.The structure of the alloy is consisted of FCC matrix and randomly distributed Cr_(23)C_(6).For gaining a better understanding of deformation mechanism,EBSD and TEM were conducted to characterize the microstructure of tensile specimens interrupted at different strains.At low strain(2%),deformation is dominated by dislocations and their partial slip.With the strain increase to 20%,deformation-driven athermal phase transformation and dislocations slip are the main deformation mechanism.While at high strain of 35%before necking,deformation twins have been observed besides the HCP phase.The simultaneous effect of phase transformation(TRIP effect)and mechanical twins(TWIP effect)delay the shrinkage,and improve the tensile strength and plasticity.What's more,compared with the HEA without C addition,the yield strength of the C-doped i HEA has been improved,which can be attributed to the grain refinement strengthening and precipitation hardening.Together with the lattice friction and solid solution strengthening,the theoretical calculated values of yield strength match well with the experimental results.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号