首页> 外文期刊>作物学报(英文版) >Developing high-efficiency base editors by combining optimized synergistic core components with new types of nuclear localization signal peptide
【24h】

Developing high-efficiency base editors by combining optimized synergistic core components with new types of nuclear localization signal peptide

机译:通过将优化的协同核心组件与新型核定位信号肽结合起来,开发高效的碱基编辑器

获取原文
获取原文并翻译 | 示例
       

摘要

The clustered regularly interspaced short palindromic repeats(CRISPR)–CRISPR-associated protein(Cas) system has been widely used for genome editing. In this system, the cytosine base editor(CBE) and adenine base editor(ABE) allow generating precise and irreversible base mutations in a programmable manner and have been used in many different types of cells and organisms. However, their applications are limited by low editing efficiency at certain genomic target sites or at specific target cytosine(C) or adenine(A) residues. Using a strategy of combining optimized synergistic core components, we developed a new multiplex super-assembled ABE(sABE) in rice that showed higher base-editing efficiency than previously developed ABEs. We also designed a new type of nuclear localization signal(NLS) comprising a FLAG epitope tag with four copies of a codon-optimized NLS(F4NLS^(r2)) to generate another ABE named F4NLS-sABE. This new NLS increased editing efficiency or edited additional A at several target sites. A new multiplex super-assembled CBE(sCBE) and F4NLS^(r2) involved F4NLS-sCBE were also created using the same strategy. F4NLS-sCBE was proven to be much more efficient than sCBE in rice. These optimized base editors will serve as powerful genome-editing tools for basic research or molecular breeding in rice and will provide a reference for the development of superior editing tools for other plants or animals.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号