首页> 中文期刊> 《计算机仿真》 >基于语义分割的室外场景识别技术研究

基于语义分割的室外场景识别技术研究

     

摘要

针对于场景识别问题,提出一种基于开源的室外场景数据集以及自定义采集的数据集在deepLabV3+深度学习模型上进行实验,并运用一种改进的K-近邻算法对DeepLabV3+深度学习模型进行优化。与现有的测试数据集的方法不同,省去了对数据集进行标签的工作,减少了大量的前期准备工作,提高了模型的计算效率以及分类模型的准确率和召回率。结果表明,使用K-近邻算法改进后的Deeplabv3+模型识别精度达到相0.75,较于直接使用Deeplabv3+模型进行语义分割的准确率0.65提高了0.1,并且得到了效果明显,在一定程度上提升了实验效率以及算法的鲁棒性。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号