首页> 中文期刊> 《计算机仿真》 >引入BL-Seq2seq模型进行负荷预测

引入BL-Seq2seq模型进行负荷预测

     

摘要

短期负荷预测在电力系统运行和调度中起着重要作用,为了更好地提取数据中蕴含的有效信息,提升短期负荷预测精度,本文引入Seq2seq算法的注意力机制提出了多层Bi-LSTM的Seq2seq深度学习模型(BL-Seq2seq)实现短期用电负荷预测.其中Seq2seq的编码端由多层Bi-LSTM组成,将输入数据进行编码,并在网络末端输出编码后的最终状态;Seq2seq解码端为单层LSTM,它将编码端的最终状态作为初始输入状态,同时每一步的输出值作为下一步的输入值.利用用电负荷实测数据,基于Keras平台进行仿真,仿真结果表明,与多个经典的深度学习的短期用电负荷预测模型相比,所提BL-Seq2seq模型的预测误差明显降低,大大提升了短期用电负荷预测精度.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号