首页> 中文期刊> 《计算机仿真》 >基于深度卷积神经网络的图像帧间补偿研究

基于深度卷积神经网络的图像帧间补偿研究

     

摘要

cqvip:由于图像分辨率低,传输过程中容易出现图像丢失、不清晰现象。针对上述问题,提出一种深度卷积神经网络算法实现图像帧间补偿。首先依据深度卷积神经网络构建图像帧间补偿模型,其次采用稀疏自编码与线性解码方式提取出该补偿模型的图像特征,再通过多层卷积神经网络对图像特征做映射处理,最后根据稀疏算法重建图像帧分辨率,使图像帧间得到补偿。实验结果表明,基于深度卷积神经网络的图像帧补偿实训可以有效提高图像帧分辨率,解决图像丢失问题,实现了图像高清晰化。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号